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Chapter 1

Introduction

The topic of this thesis is to study spin-polarized transport through various hybrid interfaces,
including metallic systems and the spin-valve transistor structure. In this chapter a general
introduction is given to the field of magnetoelectronics. Some background of the calculation
details, namely the density functional theory and the Landauer–Büttiker approach, are briefly
introduced. A short description of the spin-valve transistor is provided.

1.1 Magnetoelectronics

The electron, akin to its electrical charge and mass, possesses another intrinsic
property, resulting from its rotation around itself, which is the spin 1, an intrinsic
angular momentum (S) in quantum mechanics, and directly coupled to it a magnetic
moment. The electron spin was virtually neglected in electronics until the interes-
ting observation of the oscillatory interlayer exchange coupling observed in Fe|Cr
and Co|Cu multilayers by Grünberg et al. [2] and Parkin et al. [3–5], and the near
simultaneous discovery in 1988 by two research groups, in Paris and Jülich, of the
giant magnetoresistance (GMR) effect first observed in Fe|Cr multilayers [6, 7]. The
manipulation of this extra degree of freedom of the electron and the information it
carries opened new and exciting challenges for conventional electronics. Since then
a new discipline has emerged: magnetoelectronics [8, 9] which witnessed a dramatic
grow and has developed into a vigorous field of research. It offers opportunities for a
new generation of devices combining standard microelectronics with spin-dependent
effects that arise from the interaction between spin of the carrier and the magnetic
properties of the material. Adding the spin degree of freedom to conventional semi-
conductor charge-based electronics or using the spin degree of freedom alone will add
substantially more capability and performance to electronic products.

GMR is a quantum mechanical effect observed in layered structures that are com-
posed of alternating layers of ferromagnetic (FM) and nonmagnetic (NM) materials,

1. The spin of the electron was proposed theoretically in early 1925 by Kronig (unpublished) and
Uhlenbeck and Goudsmit [1] after Stern-Gerlach experiment of 1921.

1



2 Introduction

FM|NM|FM. Examples of GMR structures include various material combinations,
namely Fe|Cr, Co|Cu, NiFe|Cu . . .One ought to know that the electric current is
carried by electrons of two different types according to whether their spin projection
onto a given quantization axis is ±~ 1

2 , two magnetic spin states, spin up and spin
down. Nonmagnetic materials are characterized by the same number of electrons in
both spin states. As for the magnetic materials there is an imbalance in the density of
states at the Fermi energy (EF ) for spin up and spin down electrons. The dynamics
and transport in these materials are different for the two types of electrons. Accor-
ding to Mott’s “two current transport model”2 [10–12] the transport in metals can
be described in terms of two independent conducting channels, corresponding to the
majority and minority spin carriers.

The GMR effect manifests itself as a significant decrease in resistance from the
zero-magnetic-field state, when the magnetization of the adjacent ferromagnetic layers
are antiparallel due to a weak anti-ferromagnetic coupling between layers, to a lo-
wer level of resistance when the magnetization of the adjacent layers align due to
an applied external magnetic field. The directions of the magnetic moments are ma-
nipulated by external magnetic field that are applied to the materials. When the
magnetic moments of the ferromagnetic layers are parallel, the spin-dependent scat-
tering of the carriers is minimized, and the material has its lowest resistance. When
the ferromagnetic layers are antialigned, the spin-dependent scattering of the carriers
is maximized, and the material has its highest resistance. This change in resistance
of the layered system under an applied magnetic field can be explained qualitati-
vely as shown in Fig. 1.1. Each magnetic layer acts as a spin-selective valve. The
magnetization orientation determines whether it transmits predominantly spin up or
spin down electrons. Figs. 1.1c,d show the two current model that explains that this
scattering results in a low-resistance for parallel alignment and a high resistance for
antiparallel alignment. Note that the low resistance channel can correspond to the
majority spin electrons, like in Cu|Co, or to the minority spin electrons, like in Cr|Fe,
which can be explained from their respective band structures (see Chapter 3). The
model above assumes that there is no spin flip, the spin up and down electrons travel
independently in two separate spin channels. In practice electrons will change their
spins due to spin-orbit coupling or magnon scattering.

The GMR phenomenon can be observed in two principal geometries: current in
the plane of the layers (CIP) [6, 7] and current perpendicular to the planes (CPP)
[13, 14] (Fig. 1.1). Most experiments in CPP-GMR are interpreted in terms of the
two current series resistor model (2CSR) [15–17]. There are two types of structures
where GMR can be observed, multilayers and spin-valves. In the first type, two or
more ferromagnetic layers are separated by a very thin (∼ 1 nm) non-ferromagnetic
spacer (e.g. Fe|Cr|Fe). An antiferromagnetic coupling (mediated by a Ruderman-
Kittel-Kasuya-Yosida (RKKY) type of interaction), at a certain thicknesses, is ener-
getically preferable for the magnetizations of adjacent layers to align in anti-parallel.

2. The spin relaxation length, λsf , in metals is usually much larger than the elastic mean free
path, `e. λsf expresses how far an electron can travel before it loses its spin information in diffusive
transport. `e defines the average distance which an electron travels before it is eleastically scattered
at a defect.
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Figure 1.1: Schematic layout of the two states of a spin-valve structure and elec-
tron scattering in a magnetic|nonmagnetic multilayer. In antiparallel alignment (b)
both type of electrons are subject to strong scattering while in the parallel orienta-
tion (a) only one type of electrons encounters a high resistant magnetic layer. The
two current model shows that the parallel alignment (c) between the ferromagnetic
layers results in a lower resistance than the antiparallel alignment (d).

The interlayer spacing in these devices typically corresponds to the second antiferro-
magnetic peak in the AFM-FM oscillation in the RKKY coupling. By applying an
external magnetic field all the magnetizations are forced to align along the direction
of the external field. In the second type, two ferromagnetic layers, separated by a
thin (∼ 3 nm) non-ferromagnetic layer (e.g. NiFe|Au|Co), have different coercivities
or different switching properties therefore it is possible to switch them independently.
In this way the relative orientation, parallel and anti-parallel alignment, between the
two magnetic layers can be achieved. Transport from one electrode to the other is by
conduction through these metals. Spin-valve GMR is the configuration that is most
industrially useful, and is the configuration used in hard-drives. The magnetoresis-
tance effect can also be observed in granular systems. It occurs in solid precipitates
of a magnetic material in a non-magnetic matrix, e.g. matrices of copper containing
cobalt granules.

Tunneling magnetoresistance (TMR) is another interesting phenomenon effect,
sometimes referred to as junction magnetoresistance (JMR). In a spin-valve, the
nonmagnetic spacer separating the two ferromagnetic electrodes is replaced by a thin
(typically ∼ 1 nm) insulator layer (FM|I|FM) to allow quantum mechanical current
to flow. Such a structure is referred to as a magnetic tunnel junction (MTJ). For



4 Introduction

device applications it is desirable to make the tunneling barrier as thin as possible
to match the resistance of the MTJs to other electronic components. In the MTJ
structure spin-polarized electrons tunnel from one ferromagnetic electrode through
an insulating thin barrier into the second ferromagnetic electrode. The tunnel barrier
is thin enough to allow a spatial overlapping between the wave functions from both
electrodes. In general, the tunnel effect is a well-known textbook example where
the quantum mechanical nature of electrons (or other particles in a world where the
length scale is comparable to the de Broglie wavelength) is demonstrated. In short, the
wavefunction of the particle can penetrate regions where the potential is higher than
the particle total energy, for example scattering of a particle by a potential barrier.
The phenomenon of TMR is a consequence of spin-dependent tunneling due to an
imbalance in the electrical current carried by the spin down and spin up electrons.

In the past few years there was a tremendous scientific interest in studying the
GMR and TMR effects as well as in the technological applications of the GMR ele-
ments and MTJ structures. They have attracted much attention of many researchers
and engineers due to their potential application in magnetoelectronics devices such
as magnetic field sensors, read-head for magnetic hard disk drives and magnetic ran-
dom access memory (MRAMs). The latter store data using the spin information or
magnetism than electrical charges, hence the nonvolatility of MRAMs. They retain
their states even when the power is turned off. The memory is made from a two di-
mensional array of MTJs or GMR elements each serving as one bit. Reading is done
by measuring the resistance (voltage response to a bias current pulse) and writing
is performed with use of magnetic fields inductively induced by current pulses in an
adjacent wire. Due to the size of magnetoresistance in GMR elements and MTJs, the
former (with lower resistance) are suitable for hard drive technology and the latter
(with larger resistance) for memory devices. Besides the nonvolatility, the advantages
of these exotic devices combine increased data processing speed, decreased electric
power consumption, increased integration densities and nondestructive readout.

The diversity of the physical phenomena that control the operation of these ma-
gnetoresistive devices makes GMR elements and MTJs also very attractive research
subject from the fundamental physics point of view. They stimulated very intense re-
search activity where many experiments and theoretical studies have been conducted,
primarily, to understand the physical phenomena of GMR/TMR and to investigate
the conditions to enhance the magnetoresistance ratio. Key players include electronic
properties, nanoscale magnetism and spin transport which play an important role in
the field of magnetic thin films. For more details of the physics relevant to GMR in
CPP geometry and TMR effects we refer to the reviews [13, 18–23].

Electronically, the natural progression and crucial ingredient for semiconductor
based spintronics is the ability to inject a (highly) spin-polarized current into a semi-
conductor [24]. A generic spin electronic device consists of a ferromagnetic injector at
one end, a semiconducting transport medium (either an ordinary or magnetic semi-
conductor), and a spin detector on the other end. This should result in a conductance
which depends on the relative orientation of the two contacts magnetizations [25].
It operates as follows: spin-polarized electrons are injected from a magnetic source
(injector), manipulated and controlled with a gate above the semiconducting trans-
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port medium before they are collected at the magnetic drain (detector). Connecting
the many new possibilities of spin-dependent transport properties in ferromagnets
with the semiconductor world require that the ferromagnetic injector and detector
are materials having high spin polarization and compatibility with the transporting
medium. This topic has been reviewed in [26].

To obtain a measurable spin-polarized current in the transport medium, the ratio
of the conductivity of the injector-contact σFM to the conductivity of the trans-
port medium (semiconductor) σSC has to be smaller or at least close to one, i.e.
σFM/σSC ∼ 1 [27]. This calculation neglects spin scattering at the interface among
other assumptions, but it does point towards the difficulty of direct spin injection
from a ferromagnet into a semiconductor. Up to now spin injection from a ferro-
magnetic metals, as Fe, into a semiconductor, as GaAs, have shown a current spin-
polarization of only about 2% at room temperature [28]. Partial solutions to this
problem have been suggested. This includes injection of spin-polarized electrons via
an insulator tunnel barrier between the ferromagnet and the semiconductor [29].
Subsequent theoretical investigations examined the effect of spin-dependent interface
resistance at the FM|SC contact, as shown in the example of Fe|InAs [30–32]. High
spin injection efficiency of 30% extending to room temperature were reported expe-
rimentally [33]. Alternatively, a second and also practical solution would be to start
with a less conventional ferromagnets: diluted magnetic semiconductors (DMS). One
should mention that ferromagnetism of DMS is one of the most important topics
in spintronics, experimentally as well as theoretically. DMS materials, however, are
proved to be limited to low temperature since their ferromagnetic transition tempera-
ture, Curie TC , is only of the order of 100 K [34, 35], and are p-type doped. Holes are
known to lose their spin information by orders of magnitude faster than electrons due
to spin-orbit coupling at the valence band. Another approach is to use half-metallic
ferromagnets [36]. These materials are predicted to be 100% spin-polarized ferroma-
gnetic injectors. One of the many challenges in spintronics and materials science is
the search for optimizing these materials and the development of new ones. It would
be desirable, as an ultimate goal, to be able to inject spins into silicon at room tem-
perature. While GaAs is of great importance, the control of spin in silicon would raise
hopes for seamless integration of spintronics with the current information technology.

Future progress in spin-polarized transport will be largely driven by the mate-
rials advances as well as theoretical understanding which takes into account accu-
rately the ferromagnetic character of the materials. In the context of spin trans-
port effects mentioned earlier (GMR, TMR, oscillatory exchange coupling and spin
injection-detection in semiconductors [37]), typical magnetoelectronic structures are
a combination of ferromagnetic metals (like Fe, Co, Ni and their alloys, namely soft
magnetic permalloys) with thin layers of normal metals (Al, Cr, Cu, Au, . . . ), insu-
lators (e.g. MgO) and semiconductors (like GaAs) to form hybrid structures. Basic
research in magnetoelectronics is moving rapidly to smaller structures and novel ma-
terials. As devices are reduced in size, interfaces start to dominate electrical trans-
port making it essential to be able to describe reliably how they transmit and reflect
electrons. Quantum mechanical calculations have shown that interface scattering is
very significant [38, 39] and often dominates the device properties. It is clear that
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a systematic materials-specific study of the effects of magnetic interfaces and mate-
rials inhomogeneities on spin-polarized transport, taking into account the non-trivial
spin-dependence of the transmission and reflection of electrons at these magnetic
interfaces, is the key to understanding the physical phenomena mentioned above.
A comprehensive transport calculation [40] (Chapters 2 & 3) in the actual devices
(Chapter 5) with detailed knowledge of the realistic electronic structure of the stu-
died materials would provide valuable insights into both the spin-polarized transport
in these materials and confrontation with experiments. For well-studied material
combinations such as Co|Cu and Fe|Cr, modest spin-dependence of the interface
transmission [41–43] of the order of 10-20% is sufficient to account for experimental
observations [13].

1.2 Electronic structure – DFT

The computational method used in this work is based on the local spin-density
approximation (LSDA) of the density functional theory (DFT) [44]. DFT is the most
widely used method for sophisticated electronic structure calculations. The approach
proposed by Kohn and Sham [45] allows the description of electronic systems, or many
particle systems in general, whether they are atoms, molecules, or solids in terms of
the electron density n(r) (the number of electrons per unit volume at point r in the
material): it replaces the original many-body problem by an auxiliary independent-
particle problem. This framework provides a means to construct an effective single-
particle potential that determines electronic motion through the corresponding Schrö-
dinger equation whose solutions determine the particle density. At the same time, the
first-principles surface Green’s function (SGF) technique [46], formulated within the
framework of tight-binding linear muffin-tin orbitals (TB-LMTO) in atomic sphere
approximation (ASA) [47], offers a very convenient way to solve this equation under
the various boundary conditions that are associated with different geometric arran-
gements of atoms, e.g., surfaces and interfaces, impurities, and disordered materials.
To treat efficiently these inhomogeneities in a realistic band structure calculation we
make use of the coherent potential approximation (CPA) [46]. In practice, it is often a
good approximation to use the theory of LSDA, in which one applies relations invol-
ving the density of the homogeneous electron gas to the density at r of the inhomo-
geneous system, the electron density n(r) varies relatively little over a characteristic
(local Fermi) wavelength (λF = 2π

kF
≡ [3π2n(r)]−

1
3 ≈ 5Å for all transition metals) of

the electrons in the system. This DFT-LSDA approach has become the primary tool
for accurate calculations of the electronic properties in condensed matter, molecules
and other finite systems.

The original formulation of the density functional theory was based on the paper
written by P. Hohenberg and W. Kohn in 1964 [48]. Their approach is to formulate
DFT as an exact theory of many body systems. These authors showed (first theorem)
that a special role can be assigned to the electron density n(r), it is considered as
the basic variable (instead of the single particle wavefunction as in Hartree-Fock
approximation) and all the ground state properties of the system (e.g. the total
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energy), evolving in an external potential Vext(r), can be considered to be unique
functionals of the ground state density. DFT becomes complete with the second
theorem which provides a variational principle for the energy: for any particular
Vext(r), the electron density n(r) that minimizes the energy is the exact ground state
density.

To obtain the ground state density n(r), Kohn and Sham approach is to re-
place the difficult interacting many body system with a some different chosen non-
interacting system where the external potential Vext(r) is replaced with an effective
potential Veff (r). This leads to independent-particle equations for the non-interacting
system that can be considered exactly soluble (numerically) with all the difficult many
body terms incorporated into an exchange-correlation functional of the electron den-
sity. By solving the equations one finds the ground state density and energy of the
original interacting system with the accuracy limited only on the type of functional
used for the exchange-correlation potential. The single-particle Schrödinger equation
for this non-interacting system is

Hσ Ψiσ(r) = [−∇2 + V σ
eff (r)] Ψiσ(r) = εiσ Ψiσ(r), (1.1)

σ (↑ or ↓) is the spin index. Let us note that we have made use of Rydberg’s atomic
units with ~ = 1, 2me = 1, and e2 = 2, where me and e denote the electron mass
and charge, respectively; and

V σ
eff (r) = Vext(r) + VH(r) + V σ

xc(r)

= Vext(r) +
∫

2n(r′)
| r− r′ |

dr′ +
δExc[n↑, n↓]
δnσ(r)

(1.2)

Vext(r), VH(r) and V σ
xc(r) are the external potential (due to the interaction with ions

and any other external fields), Hartree potential and the exchange-correlation poten-
tial of the electrons, respectively. The Kohn-Sham single-particle solutions Ψiσ(r) of
the equations (1.1) (there are N of them for N electrons in the system) can be used
to express the ground state electron density nσ(r)

nσ(r) =
N∑

i=1

| Ψiσ(r) |2 (1.3)

where the summation is carried out over all the N individual occupied orbitals.
The electron and magnetization densities are, respectively, given by

n(r) = n↑(r) + n↓(r) (1.4)

and
m(r) = n↑(r)− n↓(r) (1.5)

Eqs. (1.1), (1.2) and (1.3) are called the Kohn-Sham equations; in practice, they
are solved self-consistently: one begins with a guess for nσ(r) and uses it to construct
V σ

eff (r) from Eq. (1.2). This V σ
eff (r) is used in Eq. (1.1) to determine a set of orbitals,
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Ψiσ(r), which yield a new electron density through Eq. (1.3). The process is repeated
until the difference between the input and the output electron densities (and poten-
tials) falls below a predetermined value. The ground state total energy functional is
given by

E =
N∑

i=1

εi −
∫ ∫

n(r)n(r′)
| r− r′ |

dr dr′ −
∫
Vxc(r)n(r)dr + Exc[n] (1.6)

Note that the total energy is not the sum of orbital energies. The eigenvalues εi of
the Kohn-Sham Hamiltonian H do not correspond to the quasi-particle excitations
energies, only their sum which corresponds to a part of the total energy of the ground
state Eq. (1.6). Idem for the single-particle Kohn-Sham solutions Ψiσ(r), they do
not correspond to one electron wavefunctions, conceptually, they are mathematical
quantities which were introduced to solve the Kohn-Sham equations Eq. (1.1) and
constructing the electron densities Eq. (1.3).

The Kohn-Sham equations, in principle, they allow an exact treatment of the
ground state of the many body problem in terms of the theory of the independent-
particle form. However, it should be mentioned that in reality an exact treatment is
not possible because Exc[n] is not known exactly. This points out that approximations
have to be made for further progress. Kohn-Sham suggested the use of the uniform-
electron-gas formula for handling the unknown parts of the energy functional. Thus,
one applies uniform-electron-gas results to infinitesimal volumes in the interacting
system that contains n(r)dr electrons, and sums up these local contributions over all
space. The resulting scheme is the most widely used approximation for Exc[n] and
is called the local spin-density approximation (LSDA) to density functional theory.
The exchange-correlation energy is given by

ELSDA
xc [n↑, n↓] =

∫
n(r)εxc[n↑(r), n↓(r)]dr, (1.7)

where εxc[n↑(r), n↓(r)] is the exchange-correlation energy per particle of uniform
electron gas with uniform spin densities n↑(r) and n↓(r). Various expressions for the
exchange-correlation energy and potential are available to be used in LSDA. The
most frequently employed parametrizations are due to von Barth and Hedin [49],
Ceperley and Alder [50] as parametrized by Perdew and Zunger [51] and Vosko, Wilk
and Nusair [52].

The DFT-LSDA have been remarkably successful in describing the ground state
properties of a large range of physical systems. It proved to be surprisingly powerful
in band structure calculations of transition metals and alloys. Examples of these
first-principles (no adjustable parameters are used) electronic structure and Fermi
surface calculations for selected materials (Fe, Cr, Co, Ni, Cu, Al, Ag, . . . and GaAs)
are shown throughout this thesis. Other approximations used in these calculations,
namely the wavefunctions and the shape of the potentials, are presented in Chapter 2
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1.3 Landauer–Büttiker approach

Ab initio calculations of electronic transport became an important tool for the
interpretation of quantum transport experiments on the atomic scale. In this section
we describe briefly the Landauer–Büttiker approach and its basic assumptions. The
Landauer-Büttiker scattering theory of transport is an established method for des-
cribing transport in mesoscopic systems, where the system size plays an important
role in determining the conductances.

Figure 1.2: One dimensional wire connected at both ends to reservoirs via ideal
leads illustrating the two-terminal transport configuration of the Landauer–Büttiker
formalism.

Let us start by deriving the Landauer formula. Landauer [53, 54] related the linear
response conductance of one-dimensional wire to the transmission and reflection pro-
bability at the Fermi energy. Let us consider the basic measuring setup as shown in
Fig. 1.2. A sample wire, that we wish to study the transport properties, is connected
at both ends to two ideal wires which are infinitely long and eventually connected to
two big reservoirs (or contacts) which are at thermodynamic equilibrium, with small
electrochemical potential difference ∆µ = µ1 − µ2. µ1 and µ2 represent the chemi-
cal potential of the two left and right reservoirs, respectively, and T and R are the
transmission and reflection probability, respectively, of the wire. The conservation of
the number of particles requires T + R = 1. The leads are assumed to be ballistic
conductors. Further, we assume that all incident electrons are absorbed by the reser-
voir irrespective of their energy and phase, the reservoirs are reflectionless and they
provide constantly electrons with energy below the chemical potential. Assuming zero
temperature, current flows between the energy range µ1 and µ2. Let v be the electron
velocity at the Fermi energy and dn/dE = 1/π~v the density of states for electrons
moving from left to right. Thus the total flowing current across the system is given
by

I = (−e)v dn
dE

T (µ1 − µ2) (1.8)

The voltage difference µ1−µ2 = −eV21 and e is the electron charge and V21 between
reservoir 2 (at right side of Fig. 1.2) and reservoir 1 (at left hand side of Fig. 1.2).
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Therefore the two terminal conductance measured between 1 and 2 is given by

G =
I

V21
=
e2

π~
T (1.9)

which is finally the single-channel Landauer formula 3 [53, 54]. This relation between
the conductance and the transmission probability is frequently used as the basis of
understanding the transport in mesoscopic systems. The potential drop associated
with the resistance (inverse of the conductance) given by Eq. (1.9) occurs at the
connections to the reservoirs. Note that it does not matter whether the transmission
probability T in Eq. (1.9) is determined by a single highly localized barrier or by a
more extended and complex potential profile.

Büttiker and coworkers have generalized the Landauer formula to systems in which
multiple independent conducting channels are present [56]. They use the transmis-
sion matrix t of the scattering obstacle, which specifies the transmitted wave func-
tions relative to the incident wave, utilizing the transverse eigenstates of the channel
as a basis. The Landauer-Büttiker scattering formalism is an approach describing
quantum-mechanically electronic transport in atomic sized structures [55]. In a two-
terminal measurement, the The Landauer-Büttiker conductance of a spin-polarized
system calculated at the Fermi energy is given by

Gσ =
e2

2π~
Tr(tt†) =

e2

h

∑
i,j

| tσij) |2 (1.10)

where tσi,j being the transmission probability amplitude between incoming states j
from the left-lead and outgoing states i in the right-lead, σ labels the spin and e2/h is
the conductance quantum. Usually the leads are assumed to have periodical symme-
try, hence the eigenmodes satisfy Bloch theorem. The details of our implementation
of transport theory based on the Landauer-Büttiker scattering formalism is presented
in Chapter 2.

1.4 Spin-valve transistor

In this section we will discuss the main features of a hybrid device containing
ferromagnetic and semiconductor materials. This device is the spin-valve transistor
(SVT). The SVT was introduced for the first time at the university of Twente in 1995
by Monsma and coworkers [57]. The SVT is a three terminal device which combines a
metallic spin-valve (explained earlier) as a base together with semiconducting emitter
and collector. The transport in the device, which is based on non-equilibrium hot-
electrons rather than Fermi electrons, depends on the relative orientation of the
magnetizations in the spin-valve. Thus the collector current depends on the magnetic

3. The original Landauer’s formula is slightly more complicated, because the above conductance
is not that of the wire but that of the system containing the leads. Basically the problem is where you
actually measure the voltage. In a four-terminal measurement, i.e. if one applies a current through
the reservoirs and then measures the voltage difference in the ideal leads, the conductance is given
by slightly different relation than Eq. (1.9), the transmission T is replaced by T/(1 − T ) [55].
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state of the base. The SVT shows a huge magnetic response up to 400% at room
temperature and in small magnetic fields of few Oe [58, 59]. The schematic layout
of the SVT is sketched in Fig. 1.3. A review on the subject is presented in Jansen’s
paper [60].

Figure 1.3: Left: Schematic structure of the SVT: semiconductor emitter (top),
semiconductor collector (bottom) and in the base (middle) a spin-valve containing
two ferromagnetic layers separated by a thin non-metallic material. Right: Energy
band diagram of the SVT and the principle of operation.

The operation of the device is as follows (right hand side of Fig. 1.3). From
the emitter side hot-electrons are injected above the Schottky barrier which is for-
med at the contact(s) ferromagnet|semiconductor interface(s). As these hot-electrons
travel through the base they undergo various elastic as well inelastic scattering pro-
cesses, which changes their energy as well as their momentum. Depending on the
relative orientation of the magnetizations in the ferromagnetic layers, spin-up and
spin-down electrons are scattered differently. Electrons are only able to enter the
collector if they have retained sufficient energy to overcome the second Schottky
barrier at the collector side and traveling with the right momentum. Hence the
collector current depends sensitively on the scattering in the base. The change of
the collector current as a function of the external magnetic field is called the ma-
gnetocurrent (MC), it is defined as MC = (IP

C − IAP
C )/IAP

C . The ratio of the collec-
ted to injected current, α = IC/IE , is defined as the transfer ratio of the device.
State of the art measurements were reported for an SVT structure consisting of
Si/Au(20Å)/NiFe(30Å)/Au(70Å)/Co(30Å)/Cu(40Å)/Si in which the magnetocur-
rent is reported to be 230% and the transfer ratio of the order of 10−4 [60]. Increasing
the thickness of the magnetic layers can easily enhance magnetocurrent but at the ex-
penses of the transfer ratio. There are various factors which may affect the electrical
and magnetic response of the device, structural defects, scattering at the interfaces,
grain boundaries . . . etc. With the exception of the latter, the previous factors are
taken into account in a study based on first-principles calculations of the electronic
transport where a model structure for the SVT was considered. The details of this
study is the subject of Chapter 5.
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For completeness we would like to mention another hybrid device. Quite similar
to the SVT (derived from it) is the magnetic tunnel transistor (MTT) which was
proposed by Monsma et al. [57]. In this device a tunnel barrier is used as an emitter.
The injected electrons can easily be tuned with an applied emitter voltage.

1.5 Thesis outline

The aim of the work presented in this thesis is to develop an efficient and flexible
method which uses no adjustable parameters to study electronic transport in com-
plex and inhomogeneous structures, e.g. various hybrid systems formed by magnetic,
nonmagnetic and/or semiconductor materials. In Chapter 2 we present the details of
such an efficient wave-function matching method suitable for the calculation of the
transmission and reflection matrices from first-principles in layered materials. Our
transport approach is based on the tight-binding muffin-tin orbitals (TB–MTO) im-
plementation of the Landauer-Büttiker scattering formalism within DFT-LSDA. To
illustrate our method we have carried out numerous calculations to study a variety of
Co|Cu(111) interface-related problems. Because a minimal basis-set of localized or-
bitals is used, namely spd(f), we are able to treat large lateral supercells. This allows
us to study transport properties in the diffusive regime and modeling materials with
large lattice mismatch. In this chapter we will show how we can analyze the detail of
various types of scattering, namely the effect of disorder at interfaces.

In Chapter 3 we carry a systematic material-specific study of the electronic and
the spin-dependent transport properties in nearly lattice matched materials, namely
Cr|Fe, Cu|Co, Cu|Ni and Co|Ni along [001], [011] and [111] directions. The calculated
3d transition metals band structures and their Fermi surfaces will be used for the in-
terpretation of the results of the transport calculations, e.g. to explain the anisotropy
in transport properties for specular interfaces observed in the Cr|Fe system. The ef-
fect of defect scattering will be considered too. It reduces the transmission probability
and thus increases the interface resistance for some systems (like in Cu|Co, Cu|Ni
and Co|Ni systems). On the other hand the opposite happens for Cr|Fe system, that
is, defect scattering enhances substantially the interface transmission. For the Cr|Fe
(001) interface, with higher spin asymmetry, the interface resistance for the majority
spin-channel decreases by a factor 3. This surprising large effect of defect scattering
on this particular orientation of Cr|Fe system will be considered in more details by
separating the ballistic versus the diffusive components of the interface transmission.

Chapter 4 is devoted to studying the orientation-dependent transparency of me-
tallic interfaces. A large anisotropy is predicted for interfaces between the prototype
free-electron materials Ag and Al, a factor of 2 difference between the (111) and (001)
orientations was found. To interpret this behavior use is made of the calculated Fermi
surfaces and their projections along these two directions. Similar results for Al/Au
interfaces were obtained.

Motivated by the transport measurements (electrical and magnetic response) in
the spin-valve transistor we have decided to carry out a study of a model structure to
understand its spin-dependent transport properties. In Chapter 5 we will apply the
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method developed in Chapter 2 to investigate the electronic, magnetic and transport
properties in GaAs|Fe|Cr|Fe|GaAs model structure. The energy- and spin-dependence
of the transmission will be explored. The effect of defect scattering at interfaces will
be discussed.
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[26] I. Žutić, J. Fabian, and S. D. Sarma, Rev. Mod. Phys. 76, 323 (2004).
[27] G. Schmidt, D. Ferrand, L. W. Molenkamp, A. T. Filip, and B. J. van Wees,

Phys. Rev. B 62, 4790 (2000).
[28] H. J. Zhu et al., Phys. Rev. Lett. 87, 016601 (2001).



14 Introduction

[29] E. I. Rashba, Phys. Rev. B 62, R16267 (2000).
[30] M. Zwierzycki, K. Xia, P. J. Kelly, G. E. W. Bauer, and I. Turek, Phys. Rev. B

67, 092401 (2003).
[31] A. Fert and H. Jaffres, Phys. Rev. B 64, 184420 (2001).
[32] D. L. Smith and R. N. Silver, Phys. Rev. B 64, 045323 (2001).
[33] A. T. Hanbicki, B. T. Jonker, G. Itskos, G. Kioseoglou, and A. Petrou, Appl.

Phys. Lett. 80, 1240 (2002).
[34] H. Ohno et al., Appl. Phys. Lett. 69, 363 (1996).
[35] F. Matsukura, H. Ohno, A. Shen, and Y. Sugawara, Phys. Rev. B 57, R2037

(1998).
[36] R. A. de Groot, F. M. Mueller, P. G. van Engen, and K. H. J. Buschow, Phys.

Rev. Lett. 83, 2024 (1983).
[37] see the collection of articles, in Ultrathin Magnetic Structures I-IV, edited by

J. A. C. Bland and B. Heinrich, Springer-Verlag, Berlin, 1994-2005.
[38] K. M. Schep, P. J. Kelly, and G. E. W. Bauer, Phys. Rev. Lett. 74, 586 (1995).
[39] P. Zahn, I. Mertig, M. Richter, and H. Eschrig, Phys. Rev. Lett. 75, 2996 (1995).
[40] K. Xia, M. Zwierzycki, M. Talanana, P. J. Kelly, and G. E. W. Bauer, Phys.

Rev. B 73, 064420 (2006).
[41] K. M. Schep, J. B. A. N. van Hoof, P. J. Kelly, G. E. W. Bauer, and J. E.

Inglesfield, Phys. Rev. B 56, 10805 (1997).
[42] M. D. Stiles and D. R. Penn, Phys. Rev. B 61, 3200 (2000).
[43] K. Xia et al., Phys. Rev. B 63, 064407 (2001).
[44] R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules

(Oxford University Press, New York, US, 1989), .
[45] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
[46] I. Turek, V. Drchal, J. Kudrnovský, M. Šob, and P. Weinberger, Electronic
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Chapter 2

First-principles scattering
matrices for spin-transport

Details are presented of an efficient formalism for calculating transmission and reflection ma-
trices from first principles in layered materials. Within the framework of spin density functio-
nal theory and using tight-binding muffin-tin orbitals, scattering matrices are determined by
matching the wave-functions at the boundaries between leads which support well-defined
scattering states and the scattering region. The calculation scales linearly with the number
of principal layers N in the scattering region and as the cube of the number of atoms H in
the lateral supercell. For metallic systems for which the required Brillouin zone sampling de-
creases as H increases, the final scaling goes as H2N . In practice, the efficient basis set
allows scattering regions for which H2N ∼ 106 to be handled. The method is illustrated for
Cu|Co multilayers and single interfaces using large lateral supercells (up to 20×20) to model
interface disorder. Because the scattering states are explicitly found, “channel decomposition”
of the interface scattering for clean and disordered interfaces can be performed.

2.1 Introduction

One of the most important driving forces in condensed matter physics in the last
thirty years has been the controlled growth of layered structures so thin that inter-
face effects dominate bulk properties and quantum size effects can be observed. In
doped semiconductors, the large Fermi wavelength of mobile charge carriers made it
possible to observe finite size effects for layer thicknesses on a micron scale. Much
thinner layers must be used in order to make such observations in metals because
Fermi wavelengths are typically of the order of an interatomic spacing. Nevertheless,
following rapidly on the heels of a number of important discoveries in semiconductor
heterostructures, interface-dominated effects such as interface magnetic anisotropy,
oscillatory exchange coupling and giant magnetoresistance (GMR) were found in ar-
tificially layered transition metal materials. Reflecting the shorter Fermi wavelength,
the characteristic length scale is of order of nanometers.

17



18 First-principles scattering matrices for spin-transport

Our main purpose in this paper is to give details of a scheme we have develo-
ped which is suitable for studying mesoscopic transport in inhomogeneous, mainly
layered, transition metal magnetic materials. In the context of a large number of
schemes designed to study transport either from first-principles [1–18] or based upon
electronic structures calculated from first-principles [19–24] we will require our com-
putational scheme to be (i) physically transparent, (ii) first-principles, requiring no
free parameters, (iii) capable of handling complex electronic structures characteristic
of transition metal elements and (iv) very efficient in order to be able to handle late-
ral supercells to study layered systems with different lattice parameters and to model
disorder very flexibly. A tight-binding (TB) muffin-tin-orbital (MTO) implementa-
tion of the Landauer-Büttiker formulation of transport theory within the local-spin-
density approximation (LSDA) of density-functional-theory (DFT) will satisfy these
requirements.

Because wave transport through interfaces is naturally described in terms of trans-
mission and reflection, the Landauer-Büttiker (LB) transmission matrix formulation
of electron transport gained rapid acceptance as a powerful tool in the field of meso-
scopic physics [25, 26], once the controversies surrounding the circumstances under
which different expressions should be used had been resolved [25]. The two-terminal
conductance of a piece of material is measured by attaching leads on either side,
passing a current through these leads and measuring the potential drop across the
scattering region. In the LB formulation of transport theory, the conductance G is
expressed in terms of a transmission matrix t ≡ t(EF )

G =
e2

h
Tr{tt†} (2.1)

where the element tµν is the probability amplitude that a state |ν〉 in the left-hand
lead incident on the scattering region from the left (see Fig. 2.1) is scattered into a
state |µ〉 in the right-hand lead. The trace simply sums over all incident and trans-
mitted “channels” ν and µ and e2

h is the fundamental unit of conductance. In much
current work on first-principles transport the conductance is calculated directly from
Green’s functions expressed in some convenient localized orbital representation [27].
Explicit calculation of the scattering states is avoided by making use of the invariance
properties of a trace. Because we want to make contact with a large body of theore-
tical literature [28] on mesoscopic physics and address a wider range of problems in
the field of spin-dependent transport, we will calculate the microscopic transmission
and reflection matrices t and r. By using a real energy, we will avoid the problems
encountered in distinguishing propagating and evanescent states when a small but
finite imaginary part of the energy is used. The Landauer-Büttiker formalism satisfies
our first requirement of physical transparency.

In developing a scheme for studying transport in transition metal multilayers, a funda-
mental difference between semiconductors and transition metals must be recognized.
Transition metal atoms have two types of electrons with different orbital character.
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Figure 2.1: Sketch of the configuration used in the Landauer-Büttiker transport
formulation to calculate the two terminal conductance. A (shaded) scattering region
(S) is sandwiched by left- (L) and right-hand (R) leads which have translational
symmetry and are partitioned into principal layers perpendicular to the transport
direction. The scattering region contains N principal layers but the structure and
chemical composition are in principle arbitrary.

The s electrons are spatially quite extended and, in solids, form broad bands with
low effective masses; they conduct easily. The d electrons are much more localized
in space, form narrow bands with large effective masses and are responsible for the
magnetism of transition metal elements. The “magnetic” electrons, however, being
itinerant do contribute to electrical transport. The appropriate framework for des-
cribing metallic magnetism, even for the late 3d transition metal elements, is band
theory [29]. An extremely successful framework exists for treating itinerant electron
systems from first-principles and this is the Local Density Approximation (LDA) of
Density Functional Theory (DFT). For band magnetism, the appropriate extension
to spin-polarized systems, the local spin-density approximation (LSDA) satisfies our
second requirement of requiring no free parameters. 1

Oscillatory exchange coupling in layered magnetic structures was discussed by
Bruno in terms of generalized reflection and transmission matrices [30] which were

1. Because the magnetism of transition metals depends very sensitively on atomic structure [29],
it is important to know this structure quite accurately. The current drive to make devices whose
lateral dimensions approach the nanoscale means that it is becoming increasingly important to
know the atomic structures of these small systems microscopically while at the same time it is more
difficult to do this characterization experimentally. It has become a practical alternative to determine
minimum-energy structures theoretically by minimizing as a function of the atomic positions the
total energy obtained by solving the Schrödinger equation self-consistently within the local density
approximation (LDA) of Density Functional Theory (DFT), thereby avoiding the use of any free
parametersu.
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calculated by Stiles [31–33] for realistic electronic structures using a scheme [34, 35]
based on linearized augmented plane waves (LAPWs). At an interface between a non-
magnetic and a magnetic metal, the different electronic structures of the majority and
minority spin electrons in the magnetic material give rise to strongly spin-dependent
reflection [1, 36]. Schep used transmission and reflection matrices calculated from
first-principles with an embedding surface Green’s function method [37] to calculate
spin-dependent interface resistances for specular Cu|Co interfaces embedded in diffu-
sive bulk material [4]. The resulting good agreement with experiment indicated that
interface disorder is less important than the spin-dependent reflection and transmis-
sion from a perfect interface. Calculations of domain wall resistances as a function of
the domain wall thickness illustrated the usefulness of calculating the full scattering
matrix [6, 38]. However, the LAPW basis set used by Stiles and Schep was com-
putationally too expensive to allow repeated lateral supercells to be used to model
interfaces between materials with very different, incommensurate lattice parameters
or to model disorder. This is true of all plane-wave based basis sets which typically
require of order 100 plane waves per atom in order to describe transition metal atom
electronic structures reasonably well.

Muffin-tin orbitals (MTO) form a flexible, minimal basis set leading to highly
efficient computational schemes for solving the Kohn-Sham equations of DFT [39–42].
For the close packed structures adopted by the magnetic materials Fe, Co, Ni and their
alloys, a basis set of 9 functions (s, p, and d orbitals) per atom in combination with the
atomic sphere approximation (ASA) for the potential leads to errors in describing
the electronic structure which are comparable to the absolute errors incurred by
using the local density approximation. This should be compared to typically 100
basis functions per atom required by the more accurate LAPW method. MTOs thus
satisfy our third and fourth requirements of being able to treat complex electronic
structures efficiently.

The tight-binding linearized muffin tin orbital (TB-LMTO) surface Green’s func-
tion (SGF) method has been developed to study the electronic structure of interfaces
and other layered systems. When combined with the coherent-potential approxima-
tion (CPA), it allows the electronic structure, charge and spin densities of layered
materials with substitutional disorder to be calculated self-consistently very efficiently
[43]. In this paper we describe how we have combined a method for calculating trans-
mission and reflection matrices based on wave-function matching (WFM), in a form
given by Ando [44] for an empirical tight-binding Hamiltonian, with a first-principles
TB-MTO basis [41]. Applications of the method to a number of problems of current
interest in spin-transport have already been given in a number of short publications:
to the calculation of spin-dependent interface resistances where interface disorder was
modelled by means of large lateral supercells [9]; to the first principles calculation
of the so-called mixing conductance parameter entering theories of current-induced
magnetization reversal [45] and Gilbert-damping enhancement via spin-pumping [46];
to a generalized scattering formulation of the suppression of Andreev scattering at a
ferromagnetic/superconducting interface [47]; to the problem of how spin-dependent
interface resistances influence spin injection from a metallic ferromagnet into a III–V
semiconductor [48–50]. These examples amply demonstrate that the fourth require-
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ment is well satisfied.
In Sec. 2.2, we give technical details of the formalism and illustrate it in Sec. 2.3

where we calculate the transmission matrices for clean and disordered Cu|Co inter-
faces, document a number of convergence and accuracy issues and give a detailed
“channel-decomposition” analysis of the scattering in the presence of disorder. A
comparison with other methods is made in Sec. 2.4.

2.2 Theory

Central to the wave-function matching method for calculating the transmission
and reflection matrices is the equation of motion (EoM) for electrons with energy ε,
relating the vectors of coefficients CI for layers I − 1, I, and I + 1:

HI,I−1CI−1 + (H− ε)I,ICI +HI,I+1CI+1 = 0. (2.2)

Here, CI ≡ CIi describes the wavefunction amplitude in terms of some localized
orbital basis |i〉 of dimension M where i labels the atomic orbital and atom site. [For
the muffin-tin orbitals to be outlined in Sec. 2.2.1, i will be a combined index R`m,
where ` and m are the azimuthal and magnetic quantum numbers, respectively, of
the MTO defined for an atomic-spheres-approximation (ASA) potential on the site
R.] The EoM does not restrict us to only considering nearest neighbour interactions
since atoms can always be grouped into layers defined as to be so thick that the
interactions between layers I and I ± 2 are negligible (see Fig. 2.1). Such layers are
called principal layers. Their thickness depends on the range of the interactions which
in turn partly depends on the spatial extent of the orbital basis. It will be minimized
by using the highly localized tight-binding MTO representation.

Consider the situation sketched in Fig. 2.1 where the scattering region S is contac-
ted with left (L) and right (R) leads which have perfect lattice periodicity and support
well-defined scattering states. We assume that the ground state charge and spin den-
sities and the corresponding Kohn-Sham independent electron potential have already
been calculated self-consistently. The calculation of the scattering matrix can now
be split into two distinct parts. In the first stage, to be discussed in Sec. 2.2.2, the
eigenmodes of the leads uµ(= C0 for the µ-th mode), of which there are 2M , are
calculated using an EoM appropriate to MTOs and making use of the lattice perio-
dicity. By calculating their k vectors (which are in general complex) and velocities
υk, the eigenstates can be classified as being either left-going uµ(−) or right-going
uµ(+). They form a basis in which to expand any left- and right-going waves and
have the convenient property that their transformation under a lattice translation in
the leads is easily calculated using Bloch’s theorem (with k complex). We use the
small Roman letters i,j to label the non-orthogonal basis and the small Greek letters
µ, ν to label the lead eigenmodes.

In the second stage discussed in Sec. 2.2.3, a scattering region S is introduced
in the layers 1 ≤ I ≤ N which mixes left- and right-going lead eigenmodes. The
scattering region can be a single interface, a complex multilayer, a tunnel junction
etc., and the scattering can be introduced by disorder or simply by discontinuities in
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the electronic structure at interfaces. The ν → µ element of the reflection matrix, rµν ,
is defined in terms of the ratio of the amplitudes of left-going and right-going solutions
in the left lead (in layer 0 for example) projected onto the νth right-going and µth

left-going propagating states (k vector real) and renormalized with the velocities so
as to have unit flux. Determining these amplitudes requires finding the inverse of
the Hamiltonian matrix of the scattering region modified by adding an embedding
potential in order to incorporate the boundary conditions imposed by the leads. This
matrix is finite and may be very sparse. Since only a few elements of its inverse
are required, methods more efficient than direct matrix inversion can be used. The
resulting numerical effort scales linearly with the extent of the scattering region in
the transport direction.

2.2.1 Muffin Tin Orbitals and the KKR equation

Muffin-tin orbitals [39–42] (MTO) are defined for potentials in which space is
divided into non-overlapping, atom-centred “muffin-tin” spheres inside which the po-
tential is spherically symmetric and the remaining “interstitial” region where the
potential is taken to be constant. The atomic spheres approximation (ASA) is ob-
tained (i) by taking the kinetic energy in the interstitial region to be zero and (ii)
by expanding the muffin-tin spheres so that they fill all space whereby the volume of
the interstitial region vanishes; for monoatomic solids such spheres are called atomic
Wigner-Seitz (WS) spheres. Inside a WS (or MT) sphere at R, the solution of the
radial Schrödinger equation regular at R, φR`(ε, rR) can be determined numerically
for energy ε and angular momentumum ` resulting in the partial wave

φR`m(ε, rR) ≡ φRL(ε, rR) ≡ φR`(ε, rR)Y`m(r̂R) (2.3)

where r̂ is a unit vector, rR ≡ r−R, and rR ≡ |r−R|. A continuous and differen-
tiable orbital is constructed by attaching to the partial wave at the sphere boundary
rR ≡ sR a “tail” consisting of an appropriate linear combination of the solutions of
the Laplace equation,

J0
RL(rR) ≡ (rR/ω)`[2(2`+ 1)]−1YL(r̂R) (2.4)

and
K0

RL(rR) ≡ (rR/ω)−`−1YL(r̂R), (2.5)

which are respectively, regular at R and at infinity. ω is the average WS radius if the
structure contains different atoms. In terms of the logarithmic derivative of φ`(ε, r)
at r ≡ s

D`(ε, s) ≡
sφ′`(ε, s)
φ`(ε, s)

(2.6)

(φ′`(ε, s) is the radial derivative), the radial solutions are matched if for r > s,

φ`(ε, r) =
`−D`

2`+ 1

( s
ω

)`+1

φ`(ε, s)

×
[
K0

` (r)− 2(2`+ 1)
(ω
s

)2`+1

(
D` + `+ 1
D` − `

)J0
` (r)

]
(2.7)
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where we drop the explicit R-dependence when this does not give rise to ambiguity.
Eq. (2.7) can be rewritten [51] in terms of the potential function,

P 0
` (ε) = 2(2`+ 1)

(ω
s

)2`+1 D`(ε) + `+ 1
D`(ε)− `

, (2.8)

and normalization, N0
` (ε) = 2`+1

`−D`

(
ω
s

)`+1 1
φ`(ε,s) , as

N0
` (ε)φ`(ε, r) = K0

` (r)− P 0
` (ε)J0

` (r). (2.9)

By subtracting from the partial wave, both inside and outside the MT sphere, the
J0

RL(rR) component which is irregular at infinity, a function is formed which is conti-
nuous, differentiable and regular in all space, an energy-dependent muffin tin orbital
χ0

RL(ε, rR):

χ0
RL(ε, rR) = N0

R`(ε)φR`(ε, r) + P 0
R`(ε)J

0
RL(rR) rR 6 sR (2.10)

= K0
L(rR) rR 1 sR (2.11)

The tail K0
RL(rR) has the desirable property that closed forms exist for expanding it

around a different site R′ in terms of the regular solutions J0
R′L′(rR′),

K0
RL(rR) = −

∑
L′

J0
R′L′(rR′)S0

R′L′,RL (2.12)

The expansion coefficients S0
R′L′,RL form a so-called canonical structure constant

matrix: they do not depend on the lattice constant, on the MT (or AS) potentials
or on energy. Because of the augmentation with J0

RL(rR), the resulting MTO is no
longer a solution of the Schrödinger equation (SE) inside its own sphere R. When,
however, a solution of the SE is sought in the form of a linear combination of MTOs
centred on different sites,

Ψ(ε, r) =
∑
R,L

χ0
RL(ε, rR)C0

RL (2.13)

then the partial wave solution is recovered if the augmenting term J0
RL(rR) on site R

is cancelled by the tails of MTOs centred on all other sites R′ 6= R, expanded about
R. The condition for this to occur is the “tail-cancellation” condition:∑

R′,L′

[
P 0

RL(ε)δRR′δLL′ − S0
RL,R′L′

]
C0

R′L′ = 0. (2.14)

All of the information about the structural geometry of the system under investigation
is contained in the structure constant matrix S0

RL,R′L′ while all of the information
about the atomic species on site R needed to calculate the electronic structure (ei-
genvalues and eigenvectors) is contained in the potential functions P 0

RL(ε). These are
determined by solving the radial Schrödinger equation for the corresponding spheri-
cally symmetrical atomic sphere potential for energy ε and angular momentum `.
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A disadvantage of these “conventional” MTOs is their infinite range. However,
there is a remarkably simple generalization of the MTOs which allows their range to
be modified by introducing a set of“screening”constants αR` (not to be confused with
the lead eigenmode index) while the “tail-cancellation” condition remains essentially
unchanged: ∑

R′,L′

[
Pα

RL(ε)δRR′δLL′ − Sα
RL,R′L′

]
Cα

R′L′ = 0. (2.15)

Pα(ε) is a diagonal matrix related to P 0(ε) by

Pα(ε) = P 0(ε) + P 0(ε)αP 0(ε) = P 0(ε)
(
1− αP 0(ε)

)−1
, (2.16)

and
Sα = S0 + S0αSα = S0

(
1− αS0

)−1
, (2.17)

For any set of αR`, the energy-dependent MTOs with the normalization∑
R,L

ω

2
Ṗα

RL(ε) |Cα
RL|

2 = 1, (2.18)

form a complete set for the MT (AS) potential used in their construction. Here, Ṗ de-
notes an energy derivative and (2.18) follows from the relationNα(ε) = [(ω/2)Ṗα(ε)]1/2.
Sets of parameters αR` have been found for which the “screened” structure constants
Sα

RL,R′L′ have very short range, decaying exponentially with the interatomic separa-
tion [40]. The set of parameters, βR`, which yields the shortest range MTOs is called
the “tight-binding” (TB) representation [39]. For close-packed structures, the range
of Sβ

RL,R′L′ is in practice limited to first- and second-nearest neighbours. This TB
set, with α = β, is what we will use from now, unless stated otherwise, since it will
allow us to define principal layers with a minimal thickness.

For the determination of energy bands ε(k), the tail-cancellation or KKR equa-
tions are inconvenient because the energy-dependence of the potential function makes
it necessary to solve (2.14) or (2.15) by searching for the roots of a determinant,
which is time consuming. Much more efficient methods have been developed based
on energy-independent MTOs. However, to study transport we only need to know
P β(ε) for a fixed energy, usually the Fermi energy. We assume that the Kohn-Sham
equations have already been solved self-consistently (using for example a linearized
method) so we have the potentials from which to calculate the potential functions.
Although (2.15) can be brought into Hamiltonian form by linearizing the energy de-
pendent potential function (see Appendix A.1), we will work directly with the more
exact KKR equation.

2.2.2 Eigenmodes of the leads

We will assume that there exists two-dimensional translational symmetry in the
plane perpendicular to the transport direction so that states can be characterized by
a lateral wave vector k‖ in the corresponding two-dimensional Brillouin zone. The
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screened KKR equation [40] in the mixed representation of k‖ and real space layer
index I (see Fig. 2.1) is

−Sk‖
I,I−1CI−1 +

(
PI,I(ε)− S

k‖
I,I

)
CI − S

k‖
I,I+1CI+1 = 0, (2.19)

where CI ≡ CIi ≡ CIR`m is a (lmax + 1)2H ≡ M dimensional vector describing the
amplitudes of the I-th layer withH sites and (lmax+1)2 orbitals per site. PI,I and SI,J

are M ×M matrices. PI,I is a diagonal matrix of potential functions characterizing
the AS potentials of layer I and

S
k‖
I,J =

∑
T∈{TI,J}

Sβ(T)eik‖.T, (2.20)

where {TI,J} denotes the set of vectors that connect one lattice site in the I-th layer
with all lattice sites in the J-th layer.

By analogy with (2.2), equation (2.19) is the equation of motion we will use to
calculate the amplitudes of right- and left-going waves which determine the scattering
matrix. We will solve it for a fixed value of ε (usually εF ), and some k‖ to find kµ(ε,k‖)
the component of the Bloch vector in the transport direction. To keep the notation
simple, explicit reference to the k‖ and ε dependence will be omitted from now on. The
formalism to be described in the following can be applied to any electronic structure
code based on the KKR equation (2.19), such as third-generation TB-LMTO [52–54].

Let us first consider the Bloch states in the ideal lead. To obtain linearly inde-
pendent solutions, we set CI = λIC0, since in a periodic potential the wave function
should satisfy Bloch’s theorem. The potential function matrix is the same for all unit
cells. The structure constant matrix depends only on the relative positions and, be-
cause that is how they are defined, there is only coupling between adjacent principal
layers so the equation of motion becomes(

S−1
0,1(P − S0,0) −S−1

0,1S1,0

1 0

) (
CI

CI−1

)
= λ

(
CI

CI−1

)
, (2.21)

The eigenvalue λµ can be written in the form λµ = exp(ikµ ·T0) with T0 connecting
equivalent sites in adjacent principal layers. The wave vector kµ can be decomposed
into k‖ and a remainder which is in general not real, kµ = (k‖,kµ − k‖). Equa-
tion (2.21) has 2M eigenvalues and 2M eigenvectors, corresponding to M right-going
and M left-going waves. By calculating the wavevectors and velocities (see Eq. (2.38)
and Appendix A.1) of the lead eigenmodes, the propagating and evanescent states
can be identified and sorted into right-going or left-going modes.

Letting u1(−), ...,uM (−) denote the left-going solutions C0 corresponding to ei-
genvalues λ1(−), ..., λM (−) and u1(+), ...,uM (+) the right-going solutions correspon-
ding to eigenvalues λ1(+), ..., λM (+), the matrix Uiµ(±) is defined as

U(±) = (u1(±)...uM (±)) (2.22)

and the matrix Λ(±) as the diagonal matrix with elements λµ(±). Following Ando,
we next expand any left- or right-going wave, at I = 0 for example, as

C0(±) = U(±)C(±). (2.23)
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Note that C0 is a vector whose elements are labelled i while the elements of the
vector C are labelled µ.

F (±) ≡ U(±)Λ±U
−1(±) (2.24)

is the matrix of Bloch factors (including evanescent states) transformed onto the
basis |i〉 and plays a central role in the following. Knowing it makes it possible to
translate a state expressed in the basis |i〉 from layer J of the lead to layer I by

CI(±) = F I−J(±)CJ(±). (2.25)

The F matrices can be used to find the Green functions of the lead (but it should
be emphasized that these are not required in the Ando’s approach). For example, the
retarded surface Green function of the semi-infinite lead extending from i = −∞ . . . 0
is given simply by

g(ε) = F−1(−)S−1
01 (2.26)

The procedure described in this section should therefore be seen as an alternative to
the recursive schemes for obtaining the surface Green functions commonly found in
the literature (see e.g. Ref. [43]). The reader is referred to Refs. [55] and [56] for more
detailed discussion.

2.2.3 Scattering problem

The scattering region S, divided into N principal layers numbered 1 to N , is
now inserted between the left and right leads. The resulting (scattering region +
leads) problem is infinite dimensional in the real space MTO representation but,
by making use of their translational symmetry, the leads can be incorporated as
boundary conditions and the scattering problem can be reduced to a finite problem
whose dimension is determined by the size of the scattering region (number of sites
× number of orbitals per site).

We set about decoupling the scattering region from the leads, first on the left-hand
side, then on the right. The amplitude in the 0-th layer is first separated into right-
and left- going components C0 = C0(+) + C0(−). Because there is no scattering of
Bloch states in the leads, the right- and left-going components can be translated to
the left by one (principal layer) lattice spacing using the generalized Bloch factors
(2.25) so the amplitude in layer −1 can be related to that in layer 0 as

C−1 = F−1
L (+)C0(+) + F−1

L (−)C0(−)

=
[
F−1
L (+)− F−1

L (−)
]
C0(+) + F−1

L (−)C0. (2.27)

allowing us to express C−1 in terms of C0 and C0(+) and so eliminate it from the
equation of motion for the 0-th layer

−S0,−1C−1 + (P0,0 − S0,0)C0 − S0,1C1 = 0, (2.28)

which becomes

(P0,0 − S̃0,0)C0 − S0,1C1

= S0,−1

[
F−1
L (+)− F−1

L (−)
]
C0(+). (2.29)
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Here L denotes the left lead and S̃0,0 = S0,0+S0,−1F
−1
L (−). The quantity S0,−1F

−1
L (−)

is the “embedding potential” for the left lead and the net result is that the equations
of motion have been truncated at layer 0.

On the right-hand side of the scattering region, we are interested in the situation
where only right-going waves can exist in the (N + 1)-th layer, so

CN+2 = FR(+)CN+1(+) (2.30)

allowing CN+2 to be eliminated from the EoM for CN+1

(PN+1,N+1 − S̃N+1,N+1)CN+1 − SN+1,NCN = 0, (2.31)

where S̃N+1,N+1 = SN+1,N+1 + SN+1,N+2FR(+) and −SN+1,N+2FR(+) is the em-
bedding potential for the right lead.

Making use of the lead boundary conditions, the tail cancellation condition for the
scattering problem in real space is given by the set of inhomogeneous linear equations



(P − S̃)0,0 −S0,1 0 · · · 0 0
−S1,0 (P − S)1,1 −S1,2 · · · 0 0

0 −S2,1 (P − S)2,2 · · ·
... 0

...
... · · ·

. . .
... 0

0 0 · · · · · · (P − S)N,N −SN,N+1

0 0 0 · · · −SN+1,N (P − S̃)N+1,N+1





C0

C1

C2

...
CN

CN+1



≡
(
P−S̃

)


C0

C1

C2

...
CN

CN+1


=



S0,−1

[
F−1
L (+)− F−1

L (−)
]
C0(+)

0
0
...
0
0


(2.32)

which can be solved in terms of g =
(
P−S̃

)−1



C0

C1

C2

...
CN

CN+1


= g



S0,−1

[
F−1
L (+)− F−1

L (−)
]
C0(+)

0
0
...
0
0


This treatment is very similar to the widely used surface Green function method [55].
The boundary conditions in (2.32) are explicitly defined by considering the Bloch
wave coming from the left-hand side while for conventional retarded or advanced
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Green functions the boundary conditions are specified by an infinitesimal imaginary
part of the energy parameter ε.

We are now in a position where we can relate the outgoing wave amplitude in the
right electrode to the incoming wave in the left electrode through the Green function
by

CN+1(+) = CN+1 = gN+1,0S0,−1

[
F−1
L (+)− F−1

L (−)
]
C0(+). (2.33)

Using the transformation between the eigenstates and the localized basis functions
Uiα(±), we obtain the transmission and reflection matrix elements [44]

tµν =
(
υµ

υν

)1/2 {
U−1
R (+)gN+1,0S0,−1

[
F−1
L (+)− F−1

L (−)
]
UL(+)

}
µν

(2.34)

rµν =
(
υµ

υν

)1/2 {
U−1
L (−)

〈
g0,0S0,−1

[
F−1
L (+)− F−1

L (−)
]
− 1

〉
UL(+)

}
µν
, (2.35)

where µ and ν label Bloch states and υµ, υµ are the components of the corresponding
group velocities in the transport direction. Similarly, an incident wave from the right
side is transmitted or reflected as

t′µν =
(
υµ

υν

)1/2 {
U−1
L (−)g0,N+1SN+1,N+2 [FR(−)− FR(+)]UR(−)

}
µν

(2.36)

r′µν =
(
υµ

υν

)1/2 {
U−1
R (+) 〈gN+1,N+1SN+1,N+2 [FR(−)− FR(+)]− 1〉UR(−)

}
µν
.

(2.37)
The group velocities in (2.34)-(2.37) are determined using the expression

υµ(±) =
id

~

[
u†µ(±)Sk‖

I,I+1uµ(±)λµ − h.c.
]

(2.38)

which is derived in Appendix A. Here, I and I+1 denote neighbouring principal layers
in either left or right lead, d = T0 · n̂ is the distance between equivalent monolayers
in adjacent principal layers and n̂ is a unit vector in the transport direction.

The conductance can now be calculated using the elements of the scattering
matrix required in the Landauer-Büttiker formula (2.1), the transmission matrix
(2.34). It can be shown [55] that this is fully equivalent to the popular Caroli’s
non-equilibrium Green functions formula [57]. It is, however, expressed in a more
physically transparent fashion and avoids the use of complex energies in the Green’s
function approach (where they were introduced to stabilize the calculation of the sur-
face Green function and to make self-consistent iteration more efficient by expressing
the density matrix as a contour integral).
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2.2.4 Disorder

Interfaces between materials with different lattice parameters [47] and disordered
interfaces [9, 48] can be modelled very flexibly using lateral supercells. This approach
allows us to study the effect of various types of disorder on transport properties, ran-
ging from homogeneous interdiffusion (alloying) to islands, steps etc. The supercell
description of disorder becomes formally exact in the limit of infinitely large super-
cells. In practice, satisfactory convergence is achieved for supercells of quite moderate
size (see Sec. 2.3.3).

Leads

The factor limiting the “size” of scattering problem which can be handled in prac-
tice is the rank of the blocks of the block-tridiagonal equation of motion (2.19),
which is proportional to the number of atoms in the lateral supercell. If performed
straightforwardly in the manner outlined in Sec. 2.2.2, the solution of the lead equa-
tion (2.21) involves solving a non-Hermitian eigenvalue problem whose rank is twice
as large. Unless use is made of the greater translational symmetry present in the
leads, this can become the limiting step in the whole calculation. Doing so makes it
possible to reduce the dimension of the lead state calculation to a size determined by
the dimension of a primitive unit cell which is usually negligible.

We consider an H1×H2 lateral supercell defined by the real-space lattice vectors

A1 = H1a1 and A2 = H2a2 (2.39)

where a1 and a2 are the lattice vectors describing the in-plane periodicity of a pri-
mitive unit cell (Fig. 2.2). The cells contained within the supercell are generated by
the set of translations

T‖T ∈ T =
{
T‖ = h1a1 + h2a2 ;

0 ≤ h1 < H1, 0 ≤ h2 < H2} (2.40)

where T = 1, . . . ,H1×H2 is a convenient cell index. In reciprocal space the supercell
Brillouin zone is defined by the reduced vectors

B1 = b1/H1 and B2 = b2/H2 (2.41)

where b1 and b2 are the reciprocal lattice vectors corresponding to the real space
primitive unit cell. As a result the Brillouin zone (BZ) is folded down, as shown
schematically in Fig. 2.2 (bottom rhs), and the single kS

‖ point (S is used to label
supercell quantities) in the supercell BZ corresponds to the set of H1×H2 k|| points
in the original unfolded BZ

k‖K ∈ K =
{
k‖ = kS

‖ + h1B1 + h2B2 ;

0 ≤ h1 < H1, 0 ≤ h2 < H2} (2.42)
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Figure 2.2: Illustration of lateral supercells and corresponding 2D interface
Brillouin zones. Top panel: lattice vectors for a primitive unit cell containing a
single atom (lhs) and a 4× 4 supercell (rhs). Bottom panel: a single k-point in the
BZ (rhs) corresponding to the 4×4 real-space supercell is equivalent to 4×4 k-points
in the BZ (lhs) corresponding to the real-space primitive unit cell.

with K = 1, . . . ,H1 × H2. Solutions associated with different k‖K in the primitive
unit cell representaton become different “bands” at the single kS

‖ in the supercell
representaton.

The indices T and K provide a natural means of describing the supercell-related
matrices US(±) and F S(±) and their inverses in terms of (H1×H2)2 sub-blocks with
dimensions defined by the primitive unit cell. Thus US

T K(±) is the block containing
the amplitudes of the modes associated with k‖K in the T -th real-space cell.

Solving the single unit cell problem for the set of k‖-points belonging to K (lhs
of Fig. 2.2) and using the Bloch symmetry of the eigenmodes, we get trivially

US
T K(kS

‖) = eik‖K·T‖T U(k‖K) (2.43)
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where U(k‖K) is the matrix (2.22) of modes for a primitive unit cell for k‖K and the
± qualifier has been dropped for simplicity. Defining the matrix of phase factors

X(kS
‖) =


eik‖1

·T‖1 . . . eik‖H
·T‖1

...
...

eik‖1
·T‖H . . . eik‖H

·T‖H

 (2.44)

with H ≡ H1 ×H2, and its inverse Y = X−1, we can straightforwardly determine[
US(kS

‖)
]−1

KT
= U−1(k‖K)YKT (2.45)

and

F S
T1T2

(kS
‖) =

∑
K
XT1KF (k‖K)YKT2 (2.46)

The procedure outlined above for determining the matrices describing the lead
modes scales linearly with the size of the supercell i.e., as (H1 × H2) rather than
as (H1 × H2)3 which is the scaling typical for matrix operations. Another advan-
tage is that it enables us to analyse the scattering. By keeping track of the relation
between supercell “bands” and equivalent eigenmodes at different k‖K (Fig. 2.2) we
can straightforwardly obtain from (2.34)-(2.37) tµν(k‖K1

,k‖K2
) and other scattering

coefficients. In other words the “interband” specular scattering in the supercell pic-
ture translates, in the presence of disorder in the scattering region, into the “diffuse”
scattering between the k‖ vectors belonging to the K set.

2.3 Calculations

Even though the theoretical scheme outlined above contains no adjustable pa-
rameters, its practical implementation does involve numerous approximations, some
physical, others numerical, which need to be evaluated. At present, any workable
scheme must be based upon an independent particle approximation. The results of a
transport calculation will be limited by the extent to which the single particle electro-
nic structures used are consistent with the corresponding Fermi surfaces determined
experimentally using methods such as de Haas-van Alphen measurements or the oc-
cupied and unoccupied electronic states close to the Fermi energy determined by, for
example, photoelectron spectroscopy.

In this section we examine how various approximations affect our end results. We
begin with the calculation of the scattering states in bulk Cu and bulk Co (2.3.1).
These are then used to study specular scattering from an ideal ordered Cu|Co(111)
interface (2.3.2) after which we describe how we model disordered interfaces (2.3.3)
and how the results can be analysed.
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2.3.1 Leads

For a crystalline conductor with Bloch translational symmetry, each state at the
Fermi energy can move unhindered through the solid so that the transmission matrix
is diagonal with |tµν |2 = δµν . In this ballistic regime, (2.1) reduces to

Gσ(n̂) =
e2

h

∑
µk‖

|tσµµ(k‖)|2 =
e2

h
Nσ(n̂). (2.47)

and calculation of the so-called Sharvin conductance becomes a matter of counting
the number of modes (channels) propagating in the transport direction n̂, denoted
in (2.47) as Nσ(n̂). To solve (2.21) in practice, the orbital angular momentum ex-
pansions in (2.12) and (2.13), which are in-principle infinite, must be truncated by
introducing some cutoff in l, denoted lmax. Usually, a value of lmax = 2 or 3 is used,
corresponding to spd - or spdf -bases.

The k‖ summation is carried out by sampling, on a regular mesh, the 2D Brillouin
zone (BZ) defined by the (lateral) translational periodicity perpendicular to n̂. The
results of carrying out this BZ summation are shown in Fig. 2.3 whereGσ(n̂) is plotted
as a function of ∆2k‖/ABZ , the normalized area element per k‖-point for bulk fcc Cu
and for the majority and minority spins of bulk fcc Co. When the 2D-BZ reciprocal
lattice vectors are each divided into Q intervals, then ∆2k‖/ABZ = 1/Q2. It can
be seen that the Sharvin conductance is converged to about 1% if 3600 = 60 × 60
points are used in the complete 2D-BZ and to about 0.2% for 102400 = 320 × 320
sampling points. The worst case is for the minority spin of Co which has a complex
multi-sheeted Fermi surface. To see if there are any simple underlying trends in the
convergence, we repeatedly bisect the intervals used in the BZ summation starting
with Q = 20 and Q = 22, shown in the figure as squares and diamonds, respectively
and least-squares fitted with the dashed and dash-dotted lines. The convergence is
fairly uniform but not very systematic indicating that the summation is limited by
fine structure in the integrand at the smallest length scale studied which can only
be resolved by increasingly fine sampling. Thus there is nothing to be gained by
developing more sophisticated interpolation schemes and when we introduce disorder
in Section 2.3.3, this will be even more so. However, in the following we will see that
the level of convergence we can achieve with discrete sampling is quite adequate and
not a limiting step in the whole procedure.

The calculations shown in the figure were performed using an spd-basis, for an
fcc lattice constant a = 3.614 Å corresponding to the experimental volume of bulk
(fcc) Cu and using the exchange-correlation potential calculated and parameterized
by von Barth and Hedin [58]. For convenience, and to avoid repetition, we will refer
to this in the following as a “standard” configuration. The converged values are given
(underlined) in Table 2.1 together with values calculated using an fcc lattice constant
a = 3.549 Å corresponding to the volume of bulk hcp Co. 2 Because we shall be

2. The larger and smaller lattice constants correspond to Wigner-Seitz atomic sphere radii of
2.669 and 2.621 Bohr atomic units, respectively.
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Figure 2.3: Sharvin conductance Gσ(111) (in units of 1015 Ω−1m−2) for bulk fcc
Cu and Co (majority and minority spin) plotted as a function of the normalized
area element used in the Brillouin zone summation, ∆2k‖/ABZ = 1/Q2. Q, the
number of intervals along the reciprocal lattice vector is indicated at the top of the
figure. The dashed line is the weighted (weighting Q2) least-squares fit to the series
Q = 20, 40, 80, 160, 320 shown as squares; the dash-dotted line is the weighted least-
squares fit to the series Q = 22, 44, 88, 176, 352 shown as diamonds. The part of the
curve for the Co minority spin case to the left of the vertical dotted line is shown
on an expanded scale in the inset. An fcc lattice constant of a = 3.614Å and spd
basis were used together with von Barth-Hedin’s exchange-correlation potential.

studying Cu|Co interfaces where the volume per atom is not known very precisely
from experiment, we will want to estimate the variation that can be expected when
different but equally reasonable lattice constants are used. The increase of 3.4% (from
0.558 to 0.577 × 1015 Ω−1m−2) observed for Cu can be attributed to the increased
areal density of Cu atoms, (3.614/3.549)2 corresponding to ∼ 3.7%. The Table also
contains the corresponding results obtained with an spdf -basis. To the numerical
accuracy shown, there is no difference between the spd and spdf case for Cu.

For Co majority spin states, there is a 4% decrease in the conductance on going
from an spd to an spdf basis. For a lattice constant a = 3.614 Å, the magnetization
is 1.684µB/atom for an spd - and 1.648µB/atom for an spdf basis corresponding,
respectively, to nmaj = 5.342 and 5.324 electrons in the majority spin bands. Since
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Gσ(111)
a(Å) basis nσ present calc. Schep 3

Copper 3.549 spd 5.5 0.577(0.577,0.577) 0.57
3.549 spdf 5.5 0.577(0.577)
3.614 spd 5.5 0.558(0.559) 0.55
3.614 spdf 5.5 0.558(0.558) 0.55

Cobalt 3.549 spd 5.323 0.469(0.459,0.467) 0.45
majority 3.549 spdf 5.304 0.449(0.440) 0.43

3.614 spd 5.342 0.466(0.457) 0.45
3.614 spdf 5.324 0.448(0.439)

Cobalt 3.549 spd 3.677 1.082(1.081,1.082) 1.10
minority 3.549 spdf 3.696 1.120(1.125) 1.13

3.614 spd 3.658 1.046(1.047) 1.06
3.614 spdf 3.676 1.074(1.079)

Table 2.1: The Sharvin conductances per spin (in units of 1015 Ω−1m−2) in the
(111) direction for fcc Cu and Co using the experimental volumes of Cu and Co. The
underlined numbers are the converged values discussed in relation to Fig. 2.3. Most
of the results were obtained with von Barth-Hedin’s exchange-correlation potential
while the results in brackets are for Perdew-Zunger (PZ) and Vosko-Wilk-Nusair
(VWN) parameterizations, respectively. Where a single number is given in brackets,
it means that PZ and VWN potentials yield identical results to the accuracy given.
The corresponding results of Schep et al. are given in the last column. The number
of electrons with spin σ is given in the fourth column.

3. Ref [36].

all five (nominal) majority-spin d bands are full there are 0.342 and 0.324 electrons in
the free-electron-like sp band. In a free electron picture the ratio of the projection of
the spherical Fermi surfaces is (0.324/0.342)2/3 = 0.96, thus explaining the observed
numerical result.

The Co majority-spin conductance scarcely changes with changing lattice constant,
however. The origin of this behaviour lies in the volume dependence of the magnetic
moment. When the lattice constant is decreased, the d bands broaden and the ma-
gnetic moment decreases from 1.684 to 1.646µB/atom in the spd case with a corres-
ponding decrease of the occupancy of the sp band from 0.342 to 0.323 majority-spin
electrons. The corresponding 4% decrease in conductance is almost perfectly com-
pensated by the increased areal density of atoms so there is no net change. For the
minority-spin conductance, the same factors play a role but now the d bands are only
partly filled. This results in complex Fermi surfaces for which simple estimates cannot
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be made. In this case recourse must be made to full band structure calculations. We
return to this in Sect. 2.3.2.

The calculations presented so far were carried out using the exchange-correlation
potential calculated and parameterized by von Barth and Hedin [58]. This is only one
of a number of potentials we could have used, none of which is clearly better than the
others in describing the ground state properties of magnetic materials. To gauge the
uncertainty arising from this arbitrary choice, a number of calculations were carried
out using the potentials given by Perdew-Zunger [59] and Vosko-Wilk-Nusair [60] and
the results are given in brackets in the Table. Using different exchange-correlation
potentials leads to variation in the conductances of the order of 1 or 2 percent.

A different (but equivalent) approach was adopted by Schep et al. [1, 36] to the
determination of the Sharvin conductances for the same systems using conventional
first-principles LMTO-ASA bulk electronic band structures, i.e., using εi(k) rather
than kµ(ε = εF ,k‖) as used here. He expressed the Sharvin conductance as a projec-
tion of the Fermi surface onto a plane perpendicular to the transport direction and
calculated the areas using a suitably modified 3D-BZ integration scheme. His results
are also given in Table 2.1 and are as consistent with our present values as can be
expected when using two entirely different computer codes.

In determining the conductance of the leads, the BZ summation does not present
a problem. The uncertainties arising from small variations in the atomic volumes,
from incompleteness of the basis and from the choice of LDA parameterization are of
comparable size. The MTO-AS approximation can be systematically improved but
only at substantial computational cost. Since there is currently no way to systemati-
cally improve upon the LDA we identify it and the lack of knowledge of the atomic
structure as limiting factors in studying transport from first principles. Though the
atomic structures could be determined theoretically by total energy minimization, the
LDA again presents a barrier since it systematically underestimates lattice constants
of transition metals in particular of the 3d series. Gradient corrections sometimes
yield improvements but unfortunately not systematically so. We conclude that our
knowledge of and ability to calculate from first principles Fermi surfaces for bulk ma-
gnetic materials such as Fe or Co does not at present justify using a more accurate
but substantially more expensive computational scheme than the present one.

2.3.2 Ordered Interfaces

Cu and Co have slightly different atomic volumes. The equilibrium lattice constant
of Cu is 3.614 Å and of Co 3.549 Å, assuming an fcc structure. Even in the absence
of interface disorder, the lattice spacing will not be homogeneous and will depend on
the lattice constant of the substrate on which the sample was grown, on the global
and local concentrations of Cu and Co, and on other details of how the structure was
prepared. In principle we could calculate all of this by energy minimization. However,
we judge that the additional effort needed is not justified by current experimental
knowledge. Instead, we content ourselves with estimating the uncertainty which re-
sults from plausible variations in the (interface) structure by considering two limiting
cases and one intermediate case. In each case an fcc structure is assumed, with lattice
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a(Å) 3.549 3.582 3.614
Basis spdf spd spd spd

mCu(bulk) 0.000 0.000 0.000 0.000
mCu(int-4) 0.001(1) 0.001 0.001 0.001
mCu(int-3) – 0.001(0) 0.000 0.000 0.000
mCu(int-2) – 0.005(5) – 0.005(4,5) – 0.005(4) – 0.005
mCu(int-1) 0.002(4) 0.004(6,4) 0.003(4) 0.001(2)
mCo(int+1) 1.526(490) 1.578(45,73) 1.605(573) 1.636(01)
mCo(int+2) 1.621(597) 1.656(35,53) 1.673(53) 1.690(70)
mCo(int+3) 1.602(576) 1.645(21,41) 1.662(39) 1.680(59)
mCo(int+4) 1.610(587) 1.649(27,45) 1.665(45) 1.683(62)
mCo(bulk) 1.609(590) 1.646(22,42) 1.667(45) 1.684(62)
Gmaj(111) 0.409(399) 0.431(21,29) 0.433(22) 0.434 (24)
Gmin(111) 0.378(379) 0.378(80,79) 0.371(73) 0.364 (67)

Table 2.2: Variation of the layer-resolved magnetic moments (in Bohr magnetons)
for Cu|Co(111) interfaces with basis set and lattice constant. The main results were
obtained with von Barth-Hedin’s exchange-correlation potential while the results in
brackets, where given, are for Perdew-Zunger and Vosko-Wilk-Nusair parameteriza-
tions, respectively. The underlined conductances are the converged values discussed
in relation to Fig. 2.4. In the last two rows, the interface conductances are given in
units of 1015 Ω−1m−2.

constants corresponding to (i) the atomic volume of Cu, (ii) the atomic volume of
Co, (iii) an intermediate case with arithmetic mean of Cu and Co atomic volumes.

Our starting point is a self-consistent TB-LMTO SGF calculation [43] for the
interface embedded between semi-infinite Cu and Co leads whose potentials and
spin-densities were determined self-consistently in separate “bulk” calculations. The
charge and spin-densities are allowed to vary in nCu layers of Cu and nCo layers of Co
bounding the interface. The results of these calculations for Cu|Co(111) interfaces and
the three different lattice constants detailed above are given in Table 2.2 for nCu=4,
nCo=4. In the Cu layers, only tiny moments are induced. Only four layers away from
the interface on the Co side, the magnetic moments are seen to be very close to the
bulk values. At the interface, where the d-bandwidth is reduced as a result of the lower
coordination number, the moments are suppressed rather than enhanced. This occurs
because the majority-spin d bands are full and their number cannot increase. The
width of the free-electron like sp band is less sensitive to the change in coordination
and its exchange splitting also changes less. As a result, there is little change in the
sp moment. When the d-bandwidth is reduced, there is conversion of minority- and
majority-spin sp electrons, without loss of the sp moment, to the minority-spin d
band with loss of d moment. This picture is supported by the full calculations.

Earlier we saw that an ∼ 2% change in lattice constant changed the bulk magnetic
moment of fcc Co by 2.3%. The effect of changing the basis, from spd to spdf, was
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Figure 2.4: Interface conductance Gσ(111) (in units of 1015 Ω−1m−2) for an fcc
Cu|Co(111) interface for majority and minority spins plotted as a function of the
normalized area element used in the Brillouin zone summation, ∆2k‖/ABZ = 1/Q2.
Q, the number of intervals along the reciprocal lattice vector is indicated at the top
of the figure. The dashed line is the weighted (weighting Q2) least-squares fit to the
series Q = 20, 40, 80, 160, 320 shown as squares; the dash-dotted line is the weighted
least-squares fit to the series Q = 22, 44, 88, 176, 352 shown as diamonds. The part
of the curve for the Co minority spin case to the left of the vertical dotted line is
shown on an expanded scale in the inset. A “standard” configuration was used [61].

similar. From Table 2.2, the interface moments are seen to behave in a comparable
fashion. The magnetic moment of the interface Co atoms decreases by 3.7%, from
1.636µB/atom for a = 3.614 Å to 1.578µB/atom for a = 3.549 Å for an spd basis and
decreases from 1.578µB/atom to 1.526µB/atom for an spdf basis for a = 3.549 Å, a
change of 3.4%. Thus the sp to dmin conversion is enhanced at the interface by the
reduced d-bandwidth.

Once the interface potential has been obtained, the transmission matrix can be
calculated and the BZ summation carried out. The convergence of this summation,
shown in Fig. 2.4 for a lattice constant of a = 3.614 Å and an spd basis, closely
parallels that seen in Fig. 2.3 and therefore the k-summation does not represent a
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limitation in practice. Converged conductances

Gσ(n̂) =
e2

h

∑
µ,ν,k‖

T σ
µν(k‖) =

e2

h

∑
µ,ν,k‖

|tσµν(k‖)|2 (2.48)

are given in the last two rows of Table 2.2. Though we will not concern ourselves in
this publication with the application of the formalism we have been developing to a
detailed interpretation of experimental observations, it should be noted that even a
modest spin-dependence of “bare” interface conductances (∼ 20%) can lead to spin-
dependent interface resistances differing by a factor of ∼ 3− 5 once account is taken
of the finiteness of the conductance of the perfect leads using a formula derived by
Schep et al. [4]

Rσ
A/B =

h

e2

[
1∑
T σ

µν

− 1
2

(
1
Nσ

A

+
1
Nσ

B

)]
(2.49)

where Nσ
A and Nσ

B , defined in (2.47), are the Sharvin conductances, in units of e2/h,
of the materials A and B forming the interface.

The majority-spin case can be readily understood in terms of the geometry of
the Fermi surfaces of Cu and Co so we begin by discussing this simple case before
examining the more complex minority-spin channel.

2.3.2.i) Clean Cu|Co (111) Interface: Majority Spins

In the absence of disorder, crystal momentum parallel to the interface is conserved.
If, for a given value of k‖, there is a propagating state in Cu incident on the interface
but none in Co, then an electron in such a state is completely reflected at the interface.
Conversely, k‖’s for which there is a propagating state in Co but none in Cu also
cannot contribute to the conductance. To determine the existence of such states,
it is sufficient to inspect projections of the Fermi surfaces of fcc Cu and majority-
spin Co onto a plane perpendicular to the transport direction n̂, shown in Fig. 2.5
for n̂ = (111). The first feature to note in the figure (left-hand and middle panels)
is that per k‖ there is only a single channel with positive group velocity so that
the transmission matrix in (2.48) is a complex number whose modulus squared is a
transmission probability with values between 0 and 1. It is plotted in the right-hand
panel and can be interpreted simply. Regions which are depicted blue correspond
to k‖’s for which there are propagating states in Cu but none in Co. These states
have transmission probability 0 and are totally reflected. For values of k‖ for which
there are propagating states in both Cu and Co, the transmission probability is very
close to one, depicted red. These states are essentially free electron-like states which
have the same symmetry in both materials and see the interface effectively as a very
low potential step. Close to the centre of the figure there is an annular region where
there are propagating states in Co but none in Cu so they do not contribute to the
conductance. Performing the sum in (2.48), we arrive at an interface conductance of
0.434× 1015 Ω−1m−2 to be compared to the Sharvin conductances given in Table 2.1
for Cu and Co; for a = 3.614 Å and an spd basis these are, respectively, 0.558 and
0.466 in the same units. The interface conductance of 0.434 is seen to be essentially
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Figure 2.5: Top row, left-hand panel: Fermi surface (FS) of Cu; middle panel:
majority-spin FS of Co; right-hand panel: Cu FS viewed along the (111) direc-
tion with a projection of the bulk fcc Brillouin zone (BZ) onto a plane perpendi-
cular to this direction and of the two dimensional BZ. Bottom row, left-hand and
middle panels: projections onto a plane perpendicular to the (111) direction of the
Cu and majority-spin Co Fermi surfaces; right-hand panel: transmission probability
for majority-spin states as a function of transverse crystal momentum, T (k‖) for
an fcc Cu|Co(111) interface.

the Sharvin conductance of the majority states of Co reduced because the states
closest to the Λ-axis (corresponding to the symmetry axis of the figures, the ΓL line
in reciprocal space) do not contribute. The explanation of the 5% decrease found
on going from an spd to an spdf basis, (0.431 to 0.409), parallels that given for
the corresponding change in the Sharvin conductance of bulk Co (0.469 to 0.449 in
Table 2.1).

2.3.2.ii) Clean Cu|Co (111) Interface: Minority Spins

The minority-spin case is considerably more complex because the Co minority-
spin d bands are only partly filled, resulting in multiple sheets of Fermi surface. These
sheets are shown in Fig. 2.6 together with their projections onto a plane perpendicular
to the (111) transport direction. Compared to Fig. 2.5, one difference we immediately
notice is that even single Fermi surface (FS) sheets are not single valued: for a given
k‖ there can be more than one mode with positive group velocity. The areas depicted
green in the projections of the FS sheets from the fourth and fifth bands are examples
where this occurs.
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An electron incident on the interface from the Cu side, with transverse crystal
momentum k‖, is transmitted into a linear combination of all propagating states
with the same k‖ in Co; the transmission matrix tσµν(k‖) is in general not square
but rectangular. The transmission probabilities Tµν(k‖) are shown in the bottom
row of Fig. 2.6. Because there is only a single incident state for all k‖, the maxi-
mum transmission probability is one. Comparison of the total minority-spin transmis-
sion probability TLR(k‖) (Fig. 2.6, bottom right-hand panel) with the corresponding
majority-spin quantity (bottom right-hand panel of Fig. 2.5) strikingly illustrates
the spin-dependence of the interface scattering, much more so than the integra-
ted quantities might have led us to expect; the interface conductances, 0.364 and
0.434× 1015 Ω−1m−2 from Table 2.2, differ by only ∼ 20%.

Three factors contribute to the large k‖-dependence of the transmission proba-
bility: first and foremost, the complexity of the Fermi surface of both materials but
especially of the minority spin of Co; secondly and inextricably linked with the first
because of the relationship ~υk = ∇kε(k), the mismatch of the Fermi velocities of
the states on either side of the interface. Thirdly, the orbital character of the states
µ and ν which varies strongly over the Fermi surface and gives rise to large matrix
element effects.

The great complexity of transition metal Fermi surfaces, clear from the figure and
well-documented in standard textbooks, is not amenable to simple analytical treat-
ment and has more often than not been neglected in theoretical transport studies. Ne-
vertheless, as illustrated particularly well by the ballistic limit [1, 36], spin-dependent
band structure effects have been shown to lead to magnetoresistance ratios com-
parable to what are observed experimentally in the current-perpendicular-to-plane
(CPP) measuring configuration and cannot be simply ignored in any quantitative
discussion. Most attempts to take into account contributions of the d states to elec-
tronic transport do so by mapping the five d bands onto a single tight-binding or
free-electron band with a large effective mass.

Fermi surface topology alone cannot explain all aspects of the tranmission coef-
ficients seen in Fig. 2.6. For example, there are values of k‖, such as that labelled
Y in the figure, for which propagating solutions exist on both sides of the inter-
face yet the transmission probability is zero. This can be understood as follows. At
k‖ = Y , the propagating states in Cu have {s, py, pz, dyz, d3z2−r2 , dx2−y2} character
(assuming the choice of in-plane axes as illustrated in the top righthand panel of
Fig. 2.6) and are even with respect to reflection in the plane formed by the y-axis
and the transport direction perpendicular to the (111) plane which we choose to be
the z-axis. For this k‖ the only propagating state in Co is in the fourth band. It
has {px, dxy, dxz} character which is odd with respect to reflection in the yz plane.
Consequently, the corresponding hopping matrix elements in the Hamiltonian (and
in the Green’s function) vanish and the transmission is zero.

Along the ky axis the symmetry of the states in Cu and those in the fourth band
of Co remain the same and the transmission is seen to vanish for all values of ky.
However, at points further away from Λ, we encounter states in the third band of Co
which have even character whose matrix elements do not vanish by symmetry and
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we see substantial transmission probabilities. Similarly, for points closer to Λ, there
are states in the fifth band of Co with even character whose matrix elements also
do not vanish and again the transmission probability is substantial. Because it is
obtained by superposition of transmission probabilities from Cu into the third, fourth
and fifth sheets of the Co FS, the end result, though it may appear very complicated,
can be straightforwardly analysed in this manner k-point by k-point.

Though the underlying lattice symmetry is only threefold, the Fermi surface pro-
jections shown in Fig. 2.6 have six-fold rotational symmetry about the line Λ be-
cause the bulk fcc structure has inversion symmetry (and time-reversal symmetry).
The interface breaks the inversion symmetry so Tµν(k‖) has only threefold rotation
symmetry for the individual FS sheets. However, in-plane inversion symmetry is re-
covered for the total transmission probability TLR(−k‖) = TLR(k‖) which has full
sixfold symmetry. This follows from the time-reversal symmetry and is proven in
Appendix A.2.

2.3.3 Interface Disorder

Instructive though the study of perfect interfaces may be in gaining an unders-
tanding of the role electronic structure mismatch may play in determining giant
magnetoresistive effects, all measurements are made on devices which contain di-
sorder, mostly in the diffusive regime. Because there is little information available
from experiment about the nature of this disorder, it is very important to be able
to model it in a flexible manner, introducing a minimum of free parameters. To mo-
del interfaces between materials with different lattice constants and disorder, we use
the lateral supercells described in section 2.2.4. Since this approach is formally only
valid if sufficiently large supercells are used, we begin by studying how the interface
conductance depends on the lateral supercell size.

To perform fully self-consistent calculations for a number of large lateral super-
cells and for different configurations of disorder would be prohibitively expensive.
Fortunately, the coherent potential approximation (CPA) is a very efficient way of
calculating charge and spin densities for a substitutional disordered AxB1−x alloy
with an expense comparable to that required for an ordered system with a minimal
unit cell [62]. The output from such a calculation are atomic sphere potentials for
the two sites, υA and υB . The layer CPA approximation generalizes this to allow the
concentration to vary from one layer to the next [43].

Once υA and υB have been calculated for some concentration x, an H = H1×H2

lateral supercell is constructed in which the potentials are distributed at random,
maintaining the concentration for which they were self-consistently calculated. The
conductances calculated for 4 ≤

√
H ≤ 20 are shown in Fig. 2.7 for a Cu|Co(111)

interface in which the Cu and the Co layers forming the interface are totally mixed
to give two layers of 50%-50% interface alloy. For each value of H, the results for
a number of different randomly generated disorder configurations are shown (15 for
minority, 5 for minority spin). The sample to sample variation is largest for the
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Figure 2.7: Interface conductance (in units of 1015 Ω−1m−2) for a disordered
Cu|Co (111) interface modelled as 2ML of 50%-50% alloy in a

√
H ×

√
H lateral

supercell as a function of
√

H. The results are given for different randomly generated
configurations of disorder (15 for minority spin, 5 for majority spin). Results are
for a “standard” configuration [61].

minority spin case, ranging from ±5% for a modest 4 × 4 unit cell and decreasing
to less than ±1% for a 20 × 20 unit cell. For

√
H ∼ 10, the spread in minority spin

conductances is ∼ 5% which is comparable to the typical uncertainty we associated
with the LDA error, the uncertainty in lattice constants or the error incurred by
using the ASA.

Comparing now the conductances without and with disorder, we see that interface
disorder has virtually no effect on the majority spin channel (0.434 versus 0.432 ×
1015Ω−1m−2) which is a consequence of the great similarity of the Cu and Co majority
spin potentials and electronic structures. However, in the minority-spin channel the
effect (0.364 versus 0.31 × 1015 Ω−1m−2) is much larger. As noted in the context
of (2.49), a relatively small change in the interface transmission can lead to a large
change in the interface resistance when account is taken of the finite conductance
of the leads. We will return to the consequences for the spin-dependent interface
resistance after completing the study of the interface transmission on which it is
based.



44 First-principles scattering matrices for spin-transport

1ML

4ML

2ML

Figure 2.8: Illustration of 3 different models of interface disorder conside-
red. Top (1ML): disorder is modelled using one monolayer (ML) of [Cu1−xCox]
alloy between Cu and Co leads, denoted as Cu[Cu1−xCox]Co. Middle (2ML):
disorder modelled in two MLs as Cu[Cu1−xCox|CuxCo1−x]Co. Bottom (4ML):
starting from the 2 ML disorder case, 1/3 of the concentration x of impu-
rity atoms is transferred to the next layer resulting in disorder in four MLs:
Cu[Cu1− x

3
Co x

3
|Cu1− 2x

3
Co 2x

3
|Cu 2x

3
Co1− 2x

3
|Cu x

3
Co1− x

3
]Co.

Dependence of interface conductance on alloy concentration

The transmission probabilities can be classified as being specular or diffuse de-
pending upon whether or not transverse momentum is conserved [13, 63]. In the
presence of interface disorder, modelled here in lateral supercells, the conductance
per unit area can be expressed as

G = Gs +Gd

=
e2

h

∑
µν
k‖

Tµν(k‖,k‖) +
e2

h

∑
µν

k‖ 6=k′‖

Tµν(k‖,k′‖) (2.50)

where k‖ and k′‖ belong to the two dimensional Brillouin zone for (1 × 1) transla-
tional periodicity and Tµν(k‖,k′‖) = tµν(k‖,k′‖)t

†
µν(k‖,k′‖). The transmission matrix

elements between two Bloch states with the same k‖ are defined to be specular, those
between scattering states with different k‖ as being diffuse. In the absence of interface
disorder, there is by definition only a specular component.

The results in Fig. 2.7 were obtained for a structural model of the Cu|Co(111)
interface consisting of two monolayers (2ML) of 50%-50% alloy that was derived
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Figure 2.9: Interface conductance of a disordered Cu|Co (111) interface with
disorder modelled in a 20× 20 lateral supercell as a function of the concentration x
(in percent) of Co in Cu. Results are shown for three different models with disorder
in 1, 2 or 4 MLs which are described in Fig. 2.8 where x is also defined. Only a
single disorder configuration was used and the size of the symbols corresponds to
the spread in values found for this supercell size in Fig. 2.7. For 1ML, the total
conductance is resolved into specular and diffuse components. Results are for a
“standard” configuration [61].

from X-ray [64], NMR [65, 66], and magnetic EXAFS [67] studies. Though the most
plausible model there is at present, it contains large uncertainties. This makes it
important to explore the consequences of varying the parameters defining the model.
To do so, we calculate the conductance using 20× 20 lateral supercells as a function
of alloy concentration for models in which the disorder is confined to one, two or
four monolayers. The three models are defined in Fig. 2.8. From the results shown
in Fig. 2.9, it can be seen that the interface transmission for majority-spin electrons
depends only very weakly on alloy concentration and its spatial distribution: the
results for the 1ML, 2ML and 4ML models cannot be distinguished on the scale of
the figure. When the conductance is decomposed using (2.50), the diffuse component
is found to be very small. Therefore, only the results for the minority-spin case need
be examined in any detail.
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We start by varying the alloy concentration over the full concentration range
(0-100%) in steps of 10% for a disordered monolayer. The variation in the total
transmission of ∼ 7% seen in Fig. 2.9 (1ML), substantially exceeds the spread found
for different configurations of disorder (which according to Fig. 2.7 is less than ±1%
for a 20× 20 lateral supercell) and is therefore statistically significant. Upon adding
Co to a layer of Cu, the transmission decreases, reaches a minimum for ∼ 10% Co,
then increases monotonically up to ∼ 80% Co where the transmission is higher than
for a clean interface. 4 100% Co represents a clean interface again, so this limit must
yield the same transmission as 0% Co.

The variation can be examined in terms of the specular and diffuse components
defined in (2.50). From Fig. 2.9, it can be seen that, for the minority spin channel, the
diffuse scattering by Co impurity atoms in Cu is stronger than that by Cu impurity
atoms in Co. However, the specular scattering is also more strongly reduced by Co in
Cu than by Cu in Co. The two effects largely cancel resulting in the undulatory total
transmission as a function of the alloy concentration seen in the figure. The diffuse
scattering has a maximum close to a 50%-50% alloy concentration where its contri-
bution to the conductance is almost twice as large as from the specular scattering.
While the conductance as such is scarcely affected, the strong diffuse scattering will
play an important role in destroying the phase coherence of the electrons, ultimately
justifying semiclassical descriptions of transport [68–70]. Qualitatively similar results
for the specular and diffusive components of the transmission have been reported for
the (100) orientation and 2ML model in Ref. [24].

If the disorder extends over more than a monolayer, then modelling the interface
as several layers of homogeneous alloy is not obviously realistic. Instead, one might
expect the layers closest to the interface to be most strongly mixed, the amount of
mixing decreasing with the separation from the interface. A simple way to model
this is to take two interface layers, one Cu and one Co, and to mix them in varying
degrees. Denoting this Cu|Co interface as Cu[Cu1−xCox|CuxCo1−x]Co we consider
0 ≤ x ≤ 0.5 i.e., the Cu concentration decreases monotonically from left to right.
The calculated interface transmission is seen (Fig. 2.9, 2ML) to essentially interpolate
linearly the results obtained previously for the clean (x = 0) and disordered (x = 0.5)
cases.

A slightly more elaborate model can be constructed from the 2ML model by dis-
tributing the x impurity atoms so that 2x/3 are in the interface layer while x/3 are
to be found further from the original interface, in the following layer. This results in
the concentration profile Cu[Cu1− x

3
Co x

3
|Cu1− 2x

3
Co 2x

3
|Cu 2x

3
Co1− 2x

3
|Cu x

3
Co1− x

3
]Co.

x = 0 corresponds to a completely ordered interface while the maximum value x
can have so that the concentration decreases from left to right monotonically is 75%.
This relatively small redistribution of intermixed atoms is seen to reduce the trans-
mission by 15% for x = 0.5 (Fig. 2.9, 4ML). A detailed analysis of the different
contributions to the interface scattering in the 2ML and 4ML cases will be given in

4. Interface disorder can increase interface transmission if electronic structure mismatch leads to
a highly reflecting clean interface. For example, for the majority-spin electrons at an Fe/Cr (001)
interface, this is the case. There, interface disorder in the form of two layers of 50%-50% alloy reduced
the interface resistance by a factor three [9]. See also Chpater 3.
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a separate publication.

2.3.4 Analysis of Interface Disorder Scattering

The scattering induced by two layers of 50%-50% alloy is illustrated in Fig. 2.10
and Fig. 2.11 for the majority and minority spins, respectively, of a Cu|Co(111)
interface. Calculations were performed for the single kS

‖ point, Γ, and a 20 × 20
lateral supercell equivalent to using a 1× 1 interface cell and k-space sampling with
20×20 points in the corresponding BZ. Disorder averaging was carried out using 5 (for
majority spin) or 20 (for minority spin) disorder configurations generated randomly.

Figs. 2.10(a) and 2.10(b) show the majority-spin Fermi surface projections of
fcc Cu and Co, respectively, obtained from “unfolding” the supercell calculation. The
coarse 20×20 grid is seen to yield a good representation of the detailed Fermi surface
projections shown in Fig. 2.5. T (k‖,k′‖) is shown in Fig. 2.10(c) for k‖ = Y on the
ky axis in Fig. 2.6. Specular scattering dominates with T (k‖ = Y,k′‖ = Y ) = 0.93.
The diffuse scattering is so weak that nothing can be seen on a scale of T from 0
to 1. To render it visible, a magnification by a factor 500 is needed, Fig. 2.10(d).
The total diffuse scattering Td(Y ) =

∑
k′‖ 6=Y T (Y,k′‖) = 0.04 can be seen from the

figure to be made up of contributions of T ∼ 0.0004 from roughly a quarter of the
BZ (100 k‖ points) centred on k‖ = Y . The total transmission, Ttotal = Ts + Td =
0.93 + 0.04 = 0.97, compared to a transmission of 0.99 in the absence of disorder.
Similar results were obtained for other k|| points. In the majority case, there is thus
a strong specular peak surrounded by a weak diffuse background.

The minority-spin Fermi surface projections of fcc Cu and Co are shown in
Figs. 2.11(a) and 2.11(b), respectively. Compared to the corresponding panels in
Fig. 2.6, the 20 × 20 point representation is seen to be sufficient to resolve the in-
dividual Fermi surface sheets of Co. To study the effect of interface disorder, we
consider scattering out of two different k‖s in Cu (Figs. 2.11(c) and (d)). The first
thing to note is the similarity of both transmission plots to the projected FS of Co,
Fig. 2.11(b), suggesting very strong diffusive scattering proportional to the density
of available final states.

The first case we consider is where k‖ = Y for which the transmission was
zero as a result of the symmetry of the states along the ky axis in the absence
of disorder. T (Y,k′‖) is shown in Fig. 2.10(c). By contrast with the majority-spin
case just examined, there is now scattering to all other k-points in the 2D BZ,∑

k′‖ 6=Y T (Y,k′‖) = 0.58 while T (Y, Y ) has only increased from 0.00 in the clean case,
to 0.01 in the presence of disorder. The effect of disorder is to increase the total trans-
mission, Ttotal(Y ) =

∑
k′‖
T (Y,k′‖) from 0.00 to Ts(Y ) + Td(Y ) = 0.01 + 0.58 = 0.59;

for states which were originally strongly reflected, disorder increases the transmission.

The second case we consider is that of a k-point slightly further away from the
origin Λ along the ky axis which had a high transmission, T (Y ′) = 0.98, in the
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Figure 2.10: Fermi surface projections of majority-spin fcc Cu (a) and Co (b)
derived from a single k-point using a 20 × 20 lateral supercell. The dark red point
in the Cu Fermi surface projection corresponds to the point Y in the top righthand
panel of Fig. 2.6. T (Y,k′‖) is shown in (c), and in (d) magnified by a factor 500
where the ballistic component T (Y,k′‖ = Y) is indicated by a white point because
its value goes off the scale. The results were obtained by averaging over 5 different
configurations of disorder.

Figure 2.11: Fermi surface projections of minority-spin fcc Cu (a) and Co (b)
derived from a single k-point using a 20 × 20 lateral supercell. The dark red point
in the Cu Fermi surface projection corresponds to the point Y ′ in the top righthand
panel of Fig. 2.6. (c) T (Y,k′‖) and (d) T (Y ′,k′‖) calculated using 20 different disor-
der configurations; the ballistic component T (Y ′,k′‖ = Y ′) is indicated by a white
point because its value goes off scale. The results were obtained by averaging over
20 different configurations of disorder.
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absence of disorder. For this k-point, T (Y ′,k′‖), shown in Fig. 2.10(d), looks very
similar to Fig. 2.10(c). There is strong diffuse scattering with

∑
k′‖ 6=Y ′ T (Y ′,k′‖) =

0.54 while T (Y ′, Y ′) has been drastically decreased from 0.98 in the clean case, to
0.06 as a result of disorder. The total transmission, Ttotal(Y ′) = Ts(Y ′) + Td(Y ′) =
0.06+0.54 = 0.60, is almost identical to what was found for the Y point. The effect of
disorder has been to decrease the transmission for states which were originally weakly
reflected. The strong k-dependence of the transmission found in the specular case is
largely destroyed by a small amount of disorder in the minority-spin channel. The
contribution from specular component (integrated over 2D BZ) is reduced to 15% of
the total transmission.

2.3.5 Interface resistance

To the best of our knowledge, spin-dependent interface transmissions have not yet
been measured directly. What is usually done [71, 72] is to measure total resistances
for a whole series of magnetic multilayers in which the total number of interfaces
and/or the thicknesses of the individual layers is varied. The measured results are
interpreted in terms of volume resistivities and interface resistances. By applying an
external magnetic field, the magnetizations of neighbouring layers which are oriented
antiparallel (AP) can be forced to line up in parallel (P). By measuring the resistances
in both cases, spin-dependent volume resistivities and interface resistances can be
extracted using the two current series resistor model [68–70]. If we take expression
(2.49) which relates the interface transmission to the interface resistance occurring in
the 2CSR model as given [4, 33], we can study how typical uncertainties in interface
transmission, arising from arbitrary assumptions about the interface disorder, lattice
constant or basis set translate into uncertainty in predicted interface resistances.
Using the transmission probabilities from Fig. 2.9 in (2.49) results in the curves
shown in Fig. 2.12. For comparison, a range of literature values for the spin-dependent
interface resistances derived from experiments on sputtered and MBE (molecular
beam exitaxy) grown multilayers [73] is included in the figure.

For the minority-spin case, experimental values (in units of f Ωm2) range from
1.30-1.80 compared to calculated values of 1.29 for Cu[Cu.3Co.7]Co, through 1.37
for a disorder-free interface, to a value of 2.25 for the 4ML model with x = 0.5,
Cu[Cu.83Co.17|Cu.67Co.33|Cu.33Co.67|Cu.17Co.83]Co. The influence of lattice constant
and basis set on the clean interface resistance values is small (see Table 2.3). The
present modelling of interface alloying shows that the interface resistance is more
strongly dependent on the detailed spatial distribution of disorder than was pre-
viously found [9] where only the concentration range x = 0.5 ± 0.06 of the 2ML
interface alloy model extracted from experiment [64–67] was explored.
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Figure 2.12: Interface resistance for disordered interfaces as a function of the alloy
concentration used to model disordered interfaces calculated using (2.49) and the
transmission probabilities shown in Fig. 2.9. The experimental values for sputtered
and MBE grown multilayers cited in Table I of Ref. [73] span a range of values
which is indicated by the shaded regions.

a(Å) 3.549 3.614
Basis spdf spd spd

Rmaj(111) 0.46 0.39 0.34
Rmin(111) 1.33 1.32 1.37

Table 2.3: Interface resistances, in units of fΩm2, for ordered interfaces, calcula-
ted using expression (2.49) and the data from Tables 2.1 and 2.2. The values given
here for a lattice constant of a = 3.549Å and spd basis differ slightly from those
reported in Ref. [9] which were performed using energy-independent muffin-tin or-
bitals linearized about the centers of gravity of the occupied conduction states and
not at the Fermi energy. The current implementation [48] uses energy-dependent,
(non-linearized) MTO’s, calculated exactly at the Fermi energy which improves the
accuracy at no additional cost.

For the majority-spin case, the spread in values of the interface resistance extracted
from experiment (for the same samples as for the minority-spin case) is quite small,



2.3. Calculations 51

0 5 10 15
Number of interfaces

0
0.2
0.4

0.8

1.2

1.6
1.8

R(
N)

-R
(N

-1
) (

fΩ
m

2 )

 C
u/

5x
[C

o/
Cu

]

 C
u/

1x
[C

o/
Cu

]

 C
u/

2x
[C

o/
Cu

]

 C
u/

3x
[C

o/
Cu

]

 C
u/

4x
[C

o/
Cu

]

 C
u/

6x
[C

o/
Cu

]

 C
u/

Co
exp.

minority

majority

 C
u/

7x
[C

o/
Cu

]

Figure 2.13: Differential interface resistance as the number of interfaces increase
for a disordered Cu|Co(111) multilayer embedded between Cu leads. A 10×10 lateral
supercell was used and the interface was modelled as two layers of 50%-50% alloy
(2ML model). The results represent an average over 5 disorder configurations and
were obtained for a “standard” configuration [61].The range of experimental values
[73] is indicated by the shaded regions.

0.22-0.25, and does not overlap with the values of 0.34 found for a lattice constant of
a = 3.614Å. Unlike the minority-spin case, changing the lattice constant or using an
spdf basis leads to substantially larger values (Table 2.3). Because the majority-spin
transmission does not depend on the details of the interface disorder, this cannot
be the origin of the discrepancy. Motivated by the weak scattering in this case, we
examine the validity [70, 73–76] of the 2CSR model by calculating the resistance of
a magnetic multilayer containing a large number of disordered interfaces and plot
the resistance added by each additional interface in Fig. 2.13. Compared to similar
calculations in Ref. [9], the number of interfaces, size of lateral supercell (10 × 10)
and disorder configurations averaged over are increased substantially. While the cal-
culations are in very good agreement with Ohm’s law for the strongly scattering
minority-spin case, it can be seen that this is not the case for the majority-spin elec-
trons. For a small number of interfaces there is a clear breakdown of Ohm’s law and
thus of the 2CSR model. The interface resistance eventually saturates at a value much
lower than those extracted from experiment. While inclusion of bulk scattering will
modify this picture somewhat, exploratory calculations [77] indicate that the type of
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“bulk” impurities which may be reasonably expected to be found in sputtered or MBE
grown multilayers affect the minority spin electrons much more than the majority
spins. Agreement for the latter can only be achieved at the expense of ruining good
agreement for the former.

2.4 Discussion

Details of a muffin tin orbital-based method suitable for calculating from first-
principles scattering matrices involving layered magnetic materials have been given.
In a wide range of applications [9, 45–50], it has been shown to be much more efficient
and transparent than a previously used LAPW-based method [4, 6, 37]. Various other
schemes have been developed for calculating the transmission of electrons through an
interface (or a more extended scattering region) both from first principles [7, 8, 10–
12, 14, 15, 17, 18, 34, 35, 37, 78], or using as input electronic structures which were
calculated from first principles [19, 21, 22, 79–84]. Most are based upon a formulation
for the conductance in terms of non-equilibrium Green’s functions [57] (NEGF) which
reduces in the appropriate limit to the well known Fisher-Lee (FL) linear-response
form [27] for the conductance of a finite disordered wire embedded between crystalline
leads. Most implementations of the NEGF or FL schemes have two disadvantages.
(i) The transmission is calculated for a complex energy which leads to difficulties in
studying for example, tunneling magnetoresistance, where the finite imaginary part
can give rise to an exponential decay which obscures the interesting physical decay of
the transmission as a function of the barrier thickness. (ii) For a given value of trans-
verse crystal momentum, the transmission is expressed as a trace over the basis set
in terms of which the Green’s function and self-energy are expressed [55]. While this
has the advantage that the total transmission can be calculated without explicitly
determining the scattering states and can be computationally efficient, summation of
the contributions from multiple scattering states can obscure real physical effects, for
example, the role of the symmetries of individual scattering states seen in Fig. 2.6.
Explicit determination of the scattering states not only makes a detailed analysis of
the scattering possible. The full scattering matrix, expressed in terms of the scattering
states, can be used to bridge [47] the gap between first-principles electronic struc-
ture calculations and phenomenological models of transport used to analyse complex
situations where a full first-principles treatment is not practical.

We have instead made use of an alternative technique, suitable for Hamiltonians
that can be represented in tight-binding form, that was formulated by Ando [44] and is
based upon direct matching of the scattering-region wave function to the Bloch modes
of the leads. The relationship between the wave function matching [44] and Green
function [27, 57] approaches is not immediately obvious. It was suggested recently
that WFM was incomplete [85] but the equivalence of the two approaches could be
proven [55]. Schemes similar in spirit to our own, but based upon empirical tight-
binding Hamiltonians have been presented by Sanvito et al. [22] and by Velev [23, 24].
In contrast to these schemes, our TB-MTO formalism is a parameter-free approach
that has an advantage of self-consistent determination of potentials (on CPA level for
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disordered systems) and spin densities for systems for which these are not known from
experiment. Even though all tight-binding schemes should be fundamentally similar
in performance, it would seem, judging from the size of systems to which it has been
applied, that our implementation is nevertheless substantially more efficient than
these empirical schemes. The scattering regions treated in Figs. 2.7,2.9,2.10 and 2.11
contained as many as 3200 atoms (20×20 lateral supercell × 8 principal layers where
the potential was allowed to deviate from its bulk values) or, in the case of Fig. 2.13,
∼ 15000 atoms (10× 10 lateral supercell × 150 principal layers). Our WFM scheme
should not be confused [24] with a recently developed transport formalim [8, 13] also
based upon TB-LMTOs but which makes use of the Caroli NEFG expression for the
conductance in terms of a trace and a complex energy. Khomyakov and Brocks [78]
have developed a scheme analogous to ours but based upon pseudopotentials and a
real space grid which make it more suitable for studying quantum wires or the type of
open structures studied in molecular electronics, but is computationally much more
expensive.

A third approach based upon “embedding” [86, 87] has been combined with full-
potential linearized augmented plane wave method to yield what is probably the most
accurate scheme to date [14, 15, 37] but like the real space grid WFM method [78],
these methods are numerically very demanding.

2.5 Summary

Details of a wave-function matching method suitable for calculating the scat-
tering matrices in magnetic metallic hybrid structures based upon first-principles
tight-binding muffin tin orbitals have been given and illustrated with calculations for
a variety of Cu|Co(111) interface-related problems. The minimal basis of localized
orbitals is very efficient, allowing large lateral supercells to be handled. This allows us
to model materials with large lattice mismatch or to study transport in the diffusive
regime. Because the scattering states are calculated explicitly, the effect of various
types of scattering can be analyzed in detail.
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Chapter 3

Interface conductance and
resistance of metallic multilayers

First-principles calculations of transmissions and interface resistances through metallic inter-
faces show a strong spin dependence (in case of Cr|Fe, Cu|Co, Cu|Ni, Co|Ni systems) and
orientation dependence (for Cr|Fe). Since the interface scattering states are explicitly calcu-
lated, we have identified the channels and mechanisms (specular versus diffuse scattering)
contributing to transport in the case of clean and disordered interfaces.

3.1 Introduction

The discovery of the giant magnetoresistance (GMR) [1, 2] effect and its successful
application in the information storage technology shortly afterwards gave rise to the
new field of research, the spin dependent transport. As exemplified by the case of
GMR, the research in this field is usually motivated by two factors, that is interest
in basic physical phenomena and the prospect of their application in the new breed
of nanoscale devices [3–5].

The GMR (see Ref. [6–8] for review) occurs in magnetic tri- and multi-layers
consisting alternatingly of magnetic and non-magnetic layers, e.g. Fe|Cr [1, 2, 9] and
Co|Cu [10, 11]. In such systems a very large (200% and more) change in resistance
is observed when the relative orientation of the magnetizations of the ferromagnetic
layers is changed between antiparallel (AP) and parallel (P) configurations.

Early measurements of GMR were carried out with the current flowing parallel
to the plane of the multilayers, that is in the so called current-in-plane (CIP) geome-
try. This configuration is easier experimentally and used in most current applications.
However, it does not allow for and easy discrimination between the contribution from
the spin-dependent scattering at the interfaces and in the bulk of the layers. This pro-
blem is solved in the current-perpendicular-to-the-plane (CPP) [10, 11] configuration
making it, in spite of the experimental difficulties, more appealing for the fundamen-
tal study especially as it also yields higher GMR ratios. Results of numerous CPP

59
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experiments interpreted in terms of the two current series resistor model (2CSR) [12–
15] suggests strongly that, at least in this geometry and for sufficiently thin layers,
the GMR is largely determined by the properties of the interfaces. Therefore, un-
derstanding the scattering at the interfaces goes long way towards understanding the
GMR itself.

The spin-dependent scattering in magnetic multilayers was initially interpreted
mainly in terms of defect (impurities, interface roughness etc.) scattering [16]. It has
been however subsequently demonstrated by Schep et al. [17] that the discontinuity
of electronic structures at the interfaces can, alone, give rise to substantial effect even
in the absence of defect scattering. The magnetoelectronic devices commonly contain
layers made of ferromagnetic transition metals, such as Co, Fe, or Ni, whose com-
plicated electronic structure makes a simple free-electron description inappropriate.
Therefore the theory aiming at understanding the microscopic origin of GMR should
take the band structure effects into account preferably on ab initio level so as to
incorporate the modifications of the local potentials at the interfaces (charge transfer
etc.). In addition, as the manufacturing techniques are perfected and the characteris-
tic lengths (layer thickness) of the devices decrease, the quantum effects can become
noticeable. This calls for the full-quantum mechanical treatment.

Various approaches were proposed to study spin-dependent transport. The first
theoretical works were based on the free-electron model and on the semiclassical
Boltzmann equation [12–14, 16], or single-orbital tight-binding model [18]. These
approaches ignore the realistic band structure of materials and make use of many
phenomenological parameters. First-principles methods based on density functional
theory (DFT) are the natural framework for material-specific transport properties
calculations. Some studies take into account the complicated band structure of ma-
terials but the transport theory is simplified in several ways to make the calculations
tractable [19]. Other ab initio approaches include Caroli formula based techniques,
such as the tight-binding model with parameters fitted to first principles calcula-
tions [20–27], Green’s function approach in combination with the Boltzmann equa-
tion [28, 29], or Kubo-Greenwood theory [30–32], one electron Green’s functions with
Caroli formula [33] and the transfer matrix concept [34] or, alternatively, transmission
matrices [35, 36] combined with the Landauer–Büttiker approach [37].

The Caroli and Landauer–Büttiker formalisms were shown to be fully equiva-
lent [38]. The latter approach however has an advantage of being more physically
transparent as it expresses the system’s conductance in terms of microscopic trans-
mission coefficients. These can be also used in calculations for other transport-related
phenomena such as current-induced magnetization reversal [39], Gilbert-damping en-
hancement via spin-pumping [40], spin injection from metallic ferromagnet into se-
miconductor [41–43] and Adreev reflection [44]. The interface resistances calculated
using this approach without adjustable parameters has shown good agreement with
experiment for most systems [11, 45–48]. Moreover, the same conceptual framework
can be applied in case of e.g. nanowires or molecular junctions [49, 50]. Transmission
and reflections matrices were also successfully used to discuss the oscillatory exchange
coupling in magnetic multilayers [51–54].

The primary source of electrons scattering is the mismatch of the band structures
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[17, 35] of respective materials. It can be however substantially modified by the
presence of the disorder at the interface [36, 47], a factor frequently overlooked in
ab initio transport calculations. Zahn et al. [29] have studied the influence of point
defect scattering at the interfaces and how the position of the impurity influences the
general trend of GMR in Co|Cu and Fe|Cr systems. The effect of interfacial disorder
on transport properties in Co|Cu and Fe|Cr systems has also been investigated by
using tight-binding model fitted to ab initio band structure methods and the disorder
is introduced as a random variation of the on-site atomic energies of the atomic species
[21, 22].

The purpose of the present work is to present the results of a systematic material-
specific study of the electronic structure and the spin-dependent transport in nearly
lattice matched materials (namely Cr|Fe, Cu|Co, Cu|Ni and Co|Ni) along [001], [011]
and [111] directions. Our method takes into account, on ab initio level, the complexity
of the 3d transition metals band structures and the effect of disorder, in the sense of
substitutional alloying at the interface, on equal footing. The transport calculations
are carried out within an efficient scheme based on a tight-binding muffin-tin-orbital
(TB-MTO) implementation of the Landauer-Büttiker formalism and DFT [36]. Parti-
cular attention will be devoted to Cr|Fe system as it exhibits two interesting features:
i) substantial anisotropy of transport properties for specular interfaces and ii) an in-
crease of interface transmission in the presence of the disorder. The latter effect was
previously reported by Xia et al. [47] (and rediscovered more recently in Ref. [25])
but at the time it was possible to offer only qualitative explanation.

The paper is organized as follows. In section Sec. 3.2 are given the computational
details of the ab initio method used to obtain the electronic structure and transport
properties. In Secs. 3.3 and 3.4 we present and discuss the results of the transport
calculations in Cr|Fe, Cu|Co, Cu|Ni and Co|Ni systems along [001], [011] and [111]
orientations. The energy dependence of the interface conductance and resistance are
reported in Sec. 3.5. A short discussion of our results is given in Sec. 3.6.

3.2 Method

By means of first-principles calculations we studied the spin transport in a number
of structures containing one or more interfaces between metallic layers. The trans-
port problem is formulated, fully quantum mechanically, as a scattering problem
[37]. Calculations of the transmission were carried out using the local spin-density
approximation (LSDA) of the density functional theory (DFT) in a two-step pro-
cedure. First, the electronic structure and magnetic properties were obtained using
the surface Green’s function technique (SGF) [55] implemented within the frame-
work of tight-binding linear muffin-tin orbitals (TB-LMTO) method in the atomic
sphere approximation (ASA) [56]. The coherent potential approximation (CPA) me-
thod [55] was employed to model substitutional disorder at the interfaces. In the
present study we consider nearly lattice matched materials forming an interface A|B
(namely Cr|Fe, Cu|Co, Cu|Ni and Co|Ni) along (001), (011) and (111) orientations.
The atomic sphere potentials of several monolayers (ML) on either side of the in-
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terface were iterated to self-consistency while the potentials of more distant layers
were fixed at their bulk values forming semi-inifite perfect leads. The disordered in-
terfaces are modeled with one or more MLs of AxB1−x alloy. In the second step,
the self-consistent potentials are used to calculate the transmission coefficients using
a tight-binding (TB) muffin-tin orbital (MTO) implementation [36]. These are then
used to determine the Landauer-Büttiker conductance:

Gσ(n̂) =
e2

h

∑
µ,ν,k‖

T σ
µν(k‖) =

e2

h

∑
µ,ν,k‖

| tσµν(k‖) |2 (3.1)

with σ labeling spin and tσµν being the transmission coefficients between incoming
states ν in material A and outgoing states µ in material B. In the transport calcula-
tions, substitutional disorder is modeled using large lateral supercells [36] where each
site is randomly occupied by one of the atomic species with the appropriate concen-
tration. Because a minimal basis set spd is used, we are able to treat large lateral
supercells containing as many as 800 atoms. The integration in the two-dimensional
Brillouin zone (2DBZ) is carried out with a k‖-mesh density corresponding to 105

points in the 2DBZ of a 1×1 interface unit cell.
Using Schep’s et al. [45] formula

SRσ
A/B = S

h

e2

[
1∑
|tσµν |2

− 1
2
(

1
Nσ

A

+
1
Nσ

B

)
]

(3.2)

we can then calculate the interface resistance of an interface embedded in a diffusive
system. S is the area of the interface and NA(B) are so called Sharvin conductances
(to be discussed later) equal to the number of propagating modes at the Fermi energy
for material A(B).

In the following sections we will present and discuss the results of electronic struc-
ture and transport calculations through various metallic interfaces, namely Cr|Fe,
Cu|Co, Cu|Ni and Co|Ni (001), (011) and (111) low index interfaces.

3.3 Cr|Fe

The first system that we consider is Cr|Fe along [001], [011] and [111] directions.
In the first step we calculate the properties of bulk materials, i.e. the propagating
states at Fermi energy and the magnetic profiles. Next we study scattering at clean
and disorder interfaces. While discussing the results we identify and analyze various
scattering mechanisms and compare specular versus diffuse scattering. This section
will primarily focus on (001) interface. Results are also obtained for (011) and (111)
orientations and the orientation dependence of the transmission is discussed.

3.3.1 Bulk materials

Both Fe and Cr have a bcc crystal structure and their lattice constants differ
by less than one percent. In the following we assume common lattice constant for
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Figure 3.1: Electronic band structure (left panels) and density of states (right
panels) of bcc Cr (a,b), Fe minority-spin (c,d) and majority-spin (e,f) electrons,
respectively. The Fermi level (dashed horizontal line) lies within the d-bands for all
the three band structures.
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Figure 3.2: Sharvin conductance Gσ(100) (in units of 1015 Ω−1m−2) for bulk bcc
Cr and Fe (majority and minority spin) plotted as a function of the normalized
area element used in the Brillouin zone summation, ∆2k‖/ABZ = 1/Q2. Q, the
number of intervals along the reciprocal lattice vector is indicated at the top of the
figure, is taken as series of (Q = 30, 60, 120, 240, 480). A bcc lattice constant of
a = 2.871Å and spd basis were used together with the exchange and correlation
potential expressed as proposed by Ceperley and Alder [57] and parametrized by
Perdew and Zunger [58].

both materials, a = 2.871 Å, equal to the experimental lattice constant of Fe. The
exchange and correlation potential expressed as proposed by Ceperley and Alder [57]
and parametrized by Perdew and Zunger [58] were used in calculations.

The bulk band structures and densities of states (DOS) of Cr and Fe are shown
in Fig. 3.1. One immediately notices the that the Cr and Fe minority bands are
similarly shaped and positioned with respect to the Fermi energy (EF ). In both
cases the Fermi level lies within the range of d -bands. In comparison the Fe majority
bands are shifted down and their d -bands are almost completly filled. This difference
between spin channels has direct consequences on transport properties discussed in
the following sections.

The perfect leads can be characterized, in context of transport, by the so cal-
led Sharvin conductance which has a physical meaning of the Landauer-Büttiker



3.3. Cr|Fe 65

a(Å) basis nσ (001) (011) (111)
Cr 2.87 spd 3.0 0.642 0.586 0.610

2.87 spdf 3.0 0.686 0.632 0.662

Fe 2.87 spd 2.892 0.455 0.399 0.412
min. 2.87 spdf 2.920 0.485 0.431 0.448

Fe 2.87 spd 5.108 0.815 0.781 0.817
maj. 2.87 spdf 5.079 0.906 0.866 0.906

Table 3.1: The Sharvin conductances per spin (in units of 1015 Ω−1m−2) in the
(001), (011) and (111) directions for bcc Cr and Fe using Fe bulk experimental
lattice parameter. The data reported in this table was obtained with Perdew-Zunger
parameterization for the exchange-correlation potential. The number of electrons
with spin σ is given in the fourth column.

conductance for a ballistic system where |tµν |2 = δµν :

Gσ
Sh(n̂) =

e2

h

∑
µk‖

|tσµµ(k‖)|2 =
e2

h
Nσ(n̂). (3.3)

where Nσ(n̂) is the number of states propagating in the transport direction n̂. Al-
ternatively the Sharvin conductance can be interpreted as the surface area of the
projection of the material’s Fermi surface along the direction n̂. In Fig. 3.2 Gσ

Sh(n̂)
is plotted as a function of ∆2k‖/ABZ , the normalized area element per k‖-point (we
use regular grid) for bulk bcc Cr and both spins of bcc Fe for (001) orientations.
When the 2DBZ reciprocal lattice vectors are each divided into Q intervals, then
∆2k‖/ABZ = 1/Q2. The Sharvin conductance shown in this figure is converged to
about 0.08% if 3600 = 60× 60 points are used in the complete 2D-BZ and to about
0.04% for 230400 = 480× 480 sampling points.

Table 3.1 summarizes the results of Sharvin conductance calculations at EF for
(001), (110) and (111) orientations. In each case we have performed calculations for
two bases - spd and spdf - in order to estimate the uncertainties resulting from finite
l cutoff in the angular momentum expansion of the wave function.

For both Cr and Fe minority electrons we observe a similar change in the conduc-
tances, there is between 6.9% to 8.5% increase on going from an spd- to spdf-basis.
The difference is even larger in case of Fe majority electrons where we observe an
increament of 11%. At the same time the magnetic moment of Fe atoms decrease by
about 2.5% when we go from spd to spdf basis (see Table 3.2).

Schep et al.[35] have used a different (but equivalent) approach to calculate the
Sharvin conductances for the same systems using conventional first-principles LMTO-
ASA bulk electronic band structures. They used a slightly small lattice constant
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a = 2.861 Å for bulk bcc Cr and Fe. Their results with an spd-basis agree with ours
up to within the error bar defined by the spread between our spd and spdf results.

3.3.2 Interfaces without defects

In this section we will study the effect of the band structure and the complicated
topologies of the Fermi surfaces on transport through Cr|Fe interfaces paying parti-
cular attention to the symmetry and orbital character of states involved in scattering
through the interface. Using the TB-LMTO SGF method and the ASA technique,
we start by calculating self-consistent potentials and spin-densities of an interface
embedded between two semi-infinite Cr and Fe leads. The potentials of Cr and Fe
leads are determined in a separate bulk calculations. The charge and spin-densities
are allowed to vary in n monolayers of Cr and Fe in the intermediate region between
the leads. Since the interlayer distance d vary between different orientations, different
values of n (larger n-s for smaller d-s) need to be taken in order to achieve satisfactory
convergence. In particular we have d/a =

√
3/6, 0.5 and

√
2/2 for (111), (001) and

(110) orientations respectively. Correspondingly we have assumed n = 12, 10 and 8
for these interfaces.

Table 3.2 gives the self-consistently determined magnetic profiles together with
interface conductances and resistances calculated using Eqs. (3.1) and (3.2) for perfect
and disordered (values in brackets) interfaces. Examining the magnetic profiles for
three orientations we see that the magnetic moments of Fe atoms at the interface
are generally reduced in comparison to their bulk values. The decrease is weakest
for (110) orientation and roughly the same for (001) and (111) cases. This difference
can be understood when we compare the changes to the local environment (i.e.
the coordination zone) of Fe atoms introduced by the interface. In the case of an
Fe atom in the monolayer right at the (110) interface, 2 of its 8 nearest neighbors
(n.n.) and 2 of its 6 second nearest neighbors (s.n.n) are replaced by Cr atoms. The
corresponding numbers for (001) and (111) orientations are 4 n.n + 1 s.n.n and 4 n.n
+ 3 s.n.n respectively. Accordingly we expect strongest and comparable modifications
for the latter two orientations and somewhat weaker one for (110) as indeed happens.
In addition we observe induced magnetic moments in Cr, with the moments in the
first layer oriented in the direction opposite to the Fe moments, and decaying in
quasi-periodic fashion with the increasing distance from the interface. The quasi-
oscillations have period of roughly 2 MLs for (001) and (111) orientations and 3 MLs
for (110). When comparing spd and spdf results we see that similarly to bulk the
moments at the interface decrease by 8.5%, 5.6% and 14.9% for (001), (011) and (111)
orientations, respectively. Opposite trend, i.e. the increase by 1.4%, 6.6% and 16.2%,
is observed for the magnitudes of the Cr moments. The charge transfer from Fe to
Cr at the (001) (0.095(0.101) electron/atom) and (111) (0.112(0.116) electron/atom)
interfaces is about twice as big as that of (011) (0.053(0.058) electron/atom) for and
spd-(spdf-)basis set.
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(001) (011) (111)
Basis spd spdf spd spdf spd spdf

mCr(bulk) 0.0 0.0
mCr(int-12) 0.031 0.026
mCr(int-11) – 0.038 – 0.030
mCr(int-10) 0.041 0.034 0.041 0.031
mCr(int-9) – 0.062 – 0.052 – 0.054 – 0.038
mCr(int-8) 0.083 0.068 – 0.001 – 0.000 0.046 0.033
mCr(int-7) – 0.100 – 0.079 0.002 0.002 – 0.051 – 0.031
mCr(int-6) 0.116 0.094 – 0.002 – 0.002 0.075 0.052
mCr(int-5) – 0.135 – 0.109 0.003 0.004 – 0.054 – 0.030
mCr(int-4) 0.153 0.127 – 0.002 – 0.002 0.073 0.058
mCr(int-3) – 0.157 – 0.124 – 0.002 0.002 – 0.143 – 0.119
mCr(int-2) 0.173 0.150 0.013 0.022 0.102 0.067
mCr(int-1) – 0.285 – 0.289 – 0.128 – 0.137 – 0.218 – 0.260

mFe(int+1) 1.925 1.774 2.087 1.977 1.958 1.704
mFe(int+2) 2.379 2.333 2.301 2.234 2.242 2.146
mFe(int+3) 2.283 2.210 2.269 2.210 2.185 2.076
mFe(int+4) 2.268 2.204 2.225 2.163 2.326 2.260
mFe(int+5) 2.207 2.146 2.209 2.147 2.241 2.179
mFe(int+6) 2.229 2.163 2.209 2.152 2.310 2.255
mFe(int+7) 2.210 2.154 2.214 2.159 2.225 2.174
mFe(int+8) 2.216 2.153 2.217 2.162 2.253 2.191
mFe(int+9) 2.206 2.156 2.216 2.161
mFe(int+10) 2.214 2.156 2.220 2.155
mFe(int+11) 2.211 2.158
mFe(int+12) 2.208 2.142
mFe(bulk) 2.215 2.159

Gmin 0.352(0.355) 0.401 0.319(0.315) 0.364 0.337(0.335) 0.384
Gmaj 0.112(0.255) 0.158 0.220(0.272) 0.271 0.273(0.306) 0.332

SRmin 0.961(0.930) 0.732 1.030(1.059) 0.793 0.931(0.948) 0.738
SRmaj 7.546(2.527) 5.032 3.053(2.180) 2.327 2.225(1.839) 1.704

Table 3.2: Variation of the layer-resolved magnetic moments (in Bohr magnetons)
for Cr/Fe(001), (011) and (111) interfaces with basis set spd and spdf. The data
reported in this table was obtained with Perdew-Zunger parameterization for the
exchange-correlation potential. In the four last rows, the upper two rows are the
interface conductances (G) given in units of 1015 Ω−1m−2 and the last two rows
are the interface resistances (SR) [45, 47] in units of 10−15 Ωm2 for ideal (and,
in brackets, for disordered) interfaces . S is the area of the sample for which R is
measured.

Figure 3.3 shows the conductances calculated using Eq. (3.1) for (001) interface
and spd-basis set as the function of the area of normalized 2DBZ element, that is the
number of k‖-points in the 2DBZ. The convergence of the results is similar to that of
the Sharvin conductance shown in Fig. 3.2. The converged values of conductance and
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Figure 3.3: Interface conductance Gσ(001) (in units of 1015 Ω−1m−2) for a bcc
Cr|Fe(001) interface for majority and minority spin plotted as a function of the
normalized area element used in the Brillouin zone summation, ∆2k‖/ABZ = 1/Q2.
Q, the number of intervals along the reciprocal lattice vector is indicated at the top
of the figure, is taken as series of (Q = 30, 60, 120, 240, 480).

interface resistance are given in four bottom rows of Table 3.2 and will be discussed
in detail in following section.

3.3.2.i) Cr|Fe(001) interface: Minority spins

In this and following sections we are going to present and analyze the transmis-
sion through the three low index interfaces starting with Cr|Fe(001) and minority
channel. Before we proceed let us make a remark on the relation between 3D and
2D Brillouin zones (BZ). As the (perfect) interfaces possess only two-dimensional,
in-plane translational symmetry it is of course natural to use k‖ wave vectors within
2D BZ to label transmission coefficients, spectral functions etc. Note however that
whereas the in-plane translations are the subset of the full 3D set of translations of
Bravais lattice, the same inclusive relation does not in general hold for the vectors
of 2D and 3D reciprocal lattice. This can be seen in Fig. 3.4 where in the top-right
panel we show the Cr Fermi surface (FS) with its standard bulk BZ projected along
[001] direction. The dashed rectangle indicates the area of 2D BZ. Once the “exter-
nal” pieces of the projected bulk (3D) BZ are folded into the 2D BZ we arrive at the
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Figure 3.4: Top row, left-hand panel: Fermi surface (FS) of bcc Cr; middle panel:
minority-spin FS of bcc Fe; right-hand panel: Cr FS viewed along the [001] direction
with a projection of the bulk bcc Brillouin zone (BZ) (solid lines) onto a plane
perpendicular to this direction. The dashed square represents the 2D BZ. Bottom
row, left-hand and middle panels: projections onto a plane perpendicular to the [001]
direction of the Cr and minority-spin Fe Fermi surfaces with the number of the right-
going states shown using the color scale; right-hand panel: k‖-resolved transmission
probability for majority-spin states, T (k‖) for a bcc Cr|Fe(001) interface.

bottom-left panel which shows the number of states in Cr using color scale. Similar
procedure for Fe yields the bottom-middle panel. The relation between 3D and 2D
BZ for other orientations will be shown in subsequent sections.

Because of conservation of transverse momentum (k‖, momentum parallel to the
interface), the transmission through a specular interface is non-zero only between
states with the same values of k‖. If, for a given value of k‖, there is a propagating
state in Cr incident on the interface but none in Fe, then an electron in such state
is completely reflected at the interface. Conversely, the k‖ point for which there is a
propagating state in Fe but none in Cr also cannot contribute to the conductance.
The first factor determining the transparency of the perfect interface is therefore
simply the amount of the overlap between the projected FSs of both materials. The
bottom-right panel of Fig. 3.4 shows the transmission probability from Cr into Fe.
The areas where the Cr states are perfectly reflected are marked as deep blue and
the white space means the absence of states in Cr.
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When there are n propagating states in the left and m in the right lead, the upper
theoretical limit of the transmission is given simply by the smaller of the two numbers,
min(m,n). The similarity in the bcc bulk Cr and Fe minority band structures (see
Fig. 3.1) is also reflected in their Fermi surfaces (FS) as can be seen in Fig. 3.4. We
expect therefore that in the region of the overlap the transmission should approach
the theoretical limit. The plots in the bottom row of Fig. 3.4 demonstrate that it is
indeed so. Taking for example the center of 2D BZ (Γ̄ point) we see that there are four
states at either side of the interface. What is more the states in Fe and Cr are very
similar belonging to ∆2 (dx2−y2 orbitals), ∆2′ (dxy) and doubly degenerated ∆5 (px,
py, dxz and dyz) irreducible representations (note that we assume differently oriented
coordination system for each interface with z axis normal to the interface plane).
The transmission between the states of the same symmetry is high and together they
yield T (k‖ = Γ̄) = 3.8. In the area surrounding the center of 2D BZ the transmission
approaches two and further away one which is seen to be equal to the number of
states available in Fe. Close to the edges of the 2D BZ we see the areas where there
are again up to four states at either side. Also here the total transmission is high
and approaches 3. The average transmission from Cr into Fe is equal to 0.55(0.58)
for spd(f ) basis [0.77(0.83) from Fe into Cr] and is seen to be limited mainly by
the overlap between the projections of the equivalent sheets of the Fermi surfaces –
compare e.g. the sizes of the central “rotated squares” in the bottom-left and middle
panels of Fig. 3.4.

Performing the sum in Eq. (3.1) we obtain an interface conductance of 0.352(0.401)×
1015Ω−1m−2 for an spd(f)-basis set which is essentially the Sharvin conductance of Fe
minority states reduced because of the overlap factor. Taking the expression[45, 47]
given in Eq. (3.2) we calculated the interface resistance from the Sharvin and in-
terface conductances discussed above. Shown in the last two rows of Tab. 3.2 the
computed value is 0.961 fΩm2 in case of spd-basis set. If we include f-electrons, this
value is reduced to 0.732 fΩm2.

3.3.2.ii) Cr|Fe(001) interface: Majority spins

Compared with relatively simple minority channel the majority case is much more
complicated as the electronic structures of Cr and Fe no longer resemble each other.
This was already apparent in Fig. 3.1 (top vs. bottom panel) and is further illustrated
in Fig. 3.5. The Fe majority d-bands are mostly filled whereas they were only partially
filled in case of the minority-spin. This gives rise to a large difference in the band
structure at the Fermi energy for both materials. There are four bands in Fe (Fig. 3.1e)
crossing the Fermi energy along Γ −H direction hence there are four Fermi surface
sheets, shown in Fig. 3.5 (top row) together with their projections onto a plane
perpendicular to the [001] transport direction. Note that the 3rd and 4th bands of Fe
are degenerate at Γ̄ and occupy small area in reciprocal space so we represent them
in the same figure. The projected FSs are shown in (Fig. 3.5c,d,e) and respective
transmissions in (Fig. 3.5f,g,h,i,j,k).
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Figure 3.5: Top row, left-hand panel: Fermi surface (FS) of bcc Cr; middle panel:
third-fourth, fifth and sixth FS sheets of majority-spin of bcc Fe; right-hand panel:
Fe FS viewed along the [001] direction with a projection of the bulk bcc Brillouin
zone (BZ) (solid lines) onto a plane perpendicular to this direction. The dashed
square represents the 2D BZ. Second row: corresponding projections of individual
FS sheets (c,d,e) and total FS of Fe (m). (l) is the 2D projection of the total FS of
Cr. The number of propagating states with positive velocity is color-coded following
the color bar on the right. Third and fourth row: projection of the third (a) and
fourth and fifth (b) FS sheets of bcc Cr. (f, g, and h) and (i, j and k) k‖-resolved
transmission probability Tµν(k‖) between various sheets of Cr’s and Fe’s FS. Bottom
row: right-hand panel: k‖-resolved total transmission probability for majority-spin
states, T (k‖) for a bcc Cr|Fe(001) interface. The color coding for the FS sheets
(a,b,c,d,e) is the same as that of (l,m).

Not surprisingly the average transmission is much lower in this case – 0.17(0.23)
from Cr into Fe for spd(f )-basis and 0.14(0.17) from Fe into Cr, that is respectively 2
and 5 times less than in minority channel. Accordingly the transmission probabilities
between various sheets of FS shown in panels f)-k) are mostly ver small. The interface
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conductance is equal to 0.112 × 1015 Ω−1m−2 for an spd-basis set, only about 14%
of the Sharvin conductance for Fe majority spin electrons. Including the f-electrons
in our calculations will increase this ratio to 17% and the interface conductance
to 0.158 × 1015 Ω−1m−2 (see Table 3.2). Note that while the interface conductance
(Table 3.2) is reduced when going from minority to majority case, the opposite is
true for Fe Sharvin conductances (Table 3.1). The low transparency of interface in
majorticy channel can not therefore be explained simply by the availability of states
in Fe.

In order to understand why the transmission is so low, it is useful to start again
with the states at the central Γ̄ point, indicated by circle (◦) in Fig. 3.5a)-e). As
before we have 4 states at each side of the interface. We have previously identified
the symmetries of states in Cr as ∆2, ∆2′ and two ∆5. In Fe we have ∆2′ , twice ∆5

and highly symmetric ∆1 (s, pz and d3z2−r2) state. Out of these Cr’s ∆2 and Fe’s ∆1

states have no matching counterparts on the other side of the interface and do not
contribute to conductance. The remaining states are pairwise symmetry-compatible
and have finite transmission probabilities. Their total contribution amount however
to only about 0.6 (with 3 being the upper theoretical limit). This poor matching can
be explained by the velocity mismatch mechanism. Guided by the results of the free
electron model, where T = 4vLvR/(vL + vR)2 with vL(R) being the group velocity
components normal to the interface, we expect transmission to be strongly reduced
whenever the velocities of states at either side of the interface approach zero. This
is in fact what happens. Looking at the Γ − H direction in Fig. 3.1e we see that
the ∆2′ and ∆5 states in Fe intersect the Fermi energy right at the band edge and
consequently have vanishingly small velocity along this direction.

Similar situation occurs e.g. when we move vertically away from the center towards
the edge of the 2D BZ that is we consider states with k vectors parallel to the (100)
plane (yz in the system of coordinates defined inf Fig. 3.4). The states in Fe and
Cr can be then classified as being even or odd under the reflection with respect to
this plane. Choosing for example the k‖ point halfway between center and the edge
of the 2D BZ we have two odd states in the 3rd and 4th band of Cr (consisting of
px, dxy and dxz orbitals) versus two odd states in the 5th band and one even state
in the 6th band of Fe. The odd states in Fe consist of the same orbitals as their Cr
counterpart and the even one has s, py, pz, dyz, d3z2−r2 and dx2−y2 character. Because
of strict odd-even orthogonality the 6th Fe band does not contribute to transport.
The transmission probabilities between the remaining pairs of odd states are non-zero
but small. For our point of choice they amount to only 0.45 of total transmission out
of theoretically possible 2. The transmission is, again, reduced because of the velocity
mismatch. The same holds of course for equivalent symmetry lines.

The only regions with sizeable transmission are the small pockets in the corners
of the 2D BZ. At both sides of the interface we have there two states of D3 and D4

symmetry which are (pairwise) symmetry-compatible. What is more the states in Fe
intersect the Fermi level at much steeper level than e.g. states at Γ̄. This can be seen
for D3 states in the Fig.3.1e for N −P direction. The D4 states appear in the corner
of 2D BZ because of downfolding and ares therefore not visible in the standard band
structure plot. The two scattering channels are nearly saturated with T = 1.85. The
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surface area of regions in question is however too small to have a meaningful impact
on the total, integrated conductance.

An interesting evolution occurs in the orbital character of the states as we move
along the diagonal of the 2D BZ away from the center. Focussing e.g. on the direction
towards the top-right corner we encounter states with the k vectors parallel to (1̄10)
which can be classified again as even or odd under the reflection with respect to
the this plane. Once we moved sufficiently far from the Γ̄ point there are two even
states in Cr and one odd (5th FS) and one even (6th FS) state in Fe. The transmission
between even states [Fig. 3.5h) and k)] is small and it can not be explained by velocity
mismatch anymore – the states in the 6th FS of Fe cross the Fermi level at steep
angles and possess Fermi velocities quite comparable to their Cr counterparts. The
numerical results can be explained when we analyze not only the formal symmetry
but also the details of orbital composition. The states in 6th band of Fe are derived
from the highly symmetric ∆1 states in the center and consequently are initially
dominated by s, pz and d3z2−r2 orbitals. The even states in Cr on the other hand
originate from much less symmetric ∆5 (one of the two) and ∆2′ states are mostly
composed of px(y), dxy, dxz and dyz orbitals. Comparing the two sets of orbitals one
notices that while being even with respect to the (1̄10) plane, the states in Cr exhibit
much more modulation in the plane of interface [(001)] than the Fe states. This is of
course why these states are strictly orthogonal in the center of 2D BZ. Once we move
further away from the center the orbital composition of states in question changes
so that they become more similar. The states in Fe become less symmetric and the
Cr ones develop the “outreaching” s, pz and d3z2−r2 orbitals. The resulting increase
in transmission can be seen, under close inspection, in the h), k) and n) panels of
Fig. 3.5 (look at the edges of the “rotated square” in the center). The increase is too
small to change the overall poor transmission for (001) orientation but will become
more important for (110) and (111) interfaces.

In conclusion the low conductance (transmission) of Cr|Fe(001) interface stems
from two factors: i) velocity mismatch between symmetry-compatible states in Cr
and in 3rd,4th and 5th FS of Fe, ii) near orthogonality of states in the 6th FS of Fe
to the strongly d -hybridized states in Cr.

The poor transmission results in the interface resistance about seven times larger
than that corresponding value for minority channel. It is 7.546 fΩm2 in the case of
an spd-basis set. This value is decreased to 5.032 fΩm2 for an spdf-basis calculation.

3.3.2.iii) Cr|Fe(011) and (111) interfaces

In this section we are going to discuss the properties of the Cr|Fe interface for the
(110) and (111) orientation.

Starting with (110) case we have Figs. 3.6 and 3.7 showing the Fermi surfaces
viewed along [110] direction (top row), their downfolded projections and transmission
probabilities in the suitable 2D BZ for both spin channels. The minority case presents
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Figure 3.6: Top row, left- and right-hand: Fermi surface (FS) of bcc Cr and minority-
spin Fe viewed along [011] direction. Bottom row, left-hand and middle-panels: projec-
tions onto (011) plane of Cr and minority-spin Fe Fermi surfaces. Right-hand panel:
k‖-resolved transmission probability for Cr|Fe (011) interface for minority-spin case.

Figure 3.7: Top row, left- and right-hand: Fermi surface (FS) of bcc Cr and majority-
spin Fe viewed along [011] direction. Bottom row, left-hand and middle-panels: projec-
tions onto (011) plane of Cr and majority-spin Fe Fermi surfaces. Right-hand panel:
k‖-resolved transmission probability for Cr|Fe (011) interface for majority-spin case.
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no surprises. The interface conductance and resistance, given in Table 3.2 remain in
the same range as the values for (001) interface. The slight decrease of the conduc-
tance reflects the variation in the Sharvin conductances of both materials. Comparing
the projected Fermi surfaces and transmission probabilities, shown in the bottom row
of Fig. 3.6 we see that the available channels in Fe tend to be well saturated. There-
fore, similarly as in (001) case the conductance is determined mostly by the topologies
of respective Fermi surfaces, i.e. the amount of their overlap in projection along [110].
The average transmission from Cr into Fe is equal to 0.54(0.58) for spd(f ) basis and
0.80(0.75) in the opposite direction, that is quite similar as in (001) case.

The majority case is more interesting. Looking at the numbers in Table 3.2 we
see that the interface conductance is now twice as large as it was in the case of (001)
interface. This variation bears no resemblance whatsoever to the behavior of either
Sharvin conductance. The corresponding interface resistance is roughly halved. Let
us, as we did for (001) case, start by analyzing the symmetries of the states in the
center of the 2D BZ indicated on Fig. 3.7 by the circle (◦). This point corresponds to
the Γ−N direction in Fig. 3.1 and the two states present at either side of the interface
belong to the Σ1 (3rd “red” FS in Cr; 5th “blue” FS in Fe; s, pz, d3z2−r2 and dx2−y2

orbitals) and Σ3 (4th “green” FS in Cr; 6th “brown” FS in Fe; py, dyz) irreducible
representations. The transmission between Σ1 state is nearly perfect, but the velocity
mismatch reduces the transmission for the other pair to lower, but still meaningful
0.5. Once we move away from the center (especially along y axis) the velocities in
the 6th Fe bands increase to the level comparable with their Cr counterparts and the
transmission becomes nearly perfect. Comparing the projected FSs and transmission
probabilities we see that the states in the 6th FS of Fe are transmitted into very
efficiently almost everywhere in the region of overlap between this FS and the central
“green” fragment (4th band) of Cr’s FS. This activation of previously idle 6th FS
of Fe is largely responsible for the observed increase of the conductance. The other
regions of high transmission - the “hot” pockets in the middle of the 2D BZ’s faces -
correspond to the same fragments of the FS seen previously in the corners of 2D BZ
for (001) case. The averaged transmission probabilities for majority (110) interface
are 0.38(0.43) from Cr to Fe [spd(f ) basis] and 0.28(0.32) from Fe into Cr, about two
times larger than for (001).

The interface conductances and resistances for (111) orientation given in Table 3.2
are close to those for (110) interface with minority values close also to the (001) ones.
The majority conductance is again about twice as large that of the (001) interface.
The Fermi surfaces viewed along [111] and corresponding transmission probabilities
are given in Figs. 3.8 and 3.9. The 2B BZ, shown in the top-right panel of Fig. 3.8 is
three times smaller than that of the projection of the 3D BZ. The resulting massive
downfolding (with up to 6 states stacked at one k‖ point) makes the interpretation
of the plots from the bottom row more difficult in this case. Nonetheless we see that
the once again transmission for the well-matched minority states follows the number
of available states in Fe (the number of states in Cr being generally larger in this
case) with resulting saturation of most available channels. The average transmissions
are: 0.55(0.58) from Cr into Fe and 0.82(0.86) from Fe into Cr.
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Figure 3.8: Top row, left-hand and middle-panel: Fermi surface (FS) of bcc Cr and
minority-spin Fe viewed along [111] direction. Right-hand: bulk BZ projected along [111]
(solid lines) and 2D Brillouin zone for (111) orientation (dotted lines). Bottom row,
left-hand and middle-panels: projections onto (111) plane of Cr and minority-spin Fe
Fermi surfaces. Right-hand panel: k‖-resolved transmission probability for Cr|Fe (111)
interface for minority-spin case.

Figure 3.9: Top row, left-hand and middle-panel: Fermi surface (FS) of bcc Cr and
majority-spin Fe viewed along [111] direction. Bottom row, left-hand and middle-panels:
projections onto (111) plane of Cr and majority-spin Fe Fermi surfaces. Right-hand
panel: k‖-resolved transmission probability for Cr|Fe (111) interface for majority-spin
case.
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The transmission probability for majority spins (Fig. 3.9) while not spectacularly
high remains respectable (above 1) throughout most of the 2D BZ. In the center
(marked as ◦) most of the total T = 1.27 transmission goes into the Λ1 state belonging
to the 6th band of FS. At the very edge of the 2D BZ (�) we have in Cr one even
and three odd (with respect to the (1̄10) plane, now coinciding with the yz plane)
states. In Fe on the other hand we have three even and one odd states. As the even
and odd states are orthogonal we have maximum possible transmission of 2 coming
from one odd and one even “channels”. The actual transmission is seen to be close
to this limit. The main effect responsible for the increase of conductance (compared
to (001) interface) in majority channel is again the fact that states in the 6th band
of Fe are now available for scattering into and contribute to the conductance. The
average transmission probabilities are: 0.45(0.50) from Cr into Fe and 0.33(0.37) the
other way around.

3.3.2.iv) The origin of anisotropy of interface conductance

In the preceding sections we have discussed and compared the transport properties
of the three low index interfaces – (001), (110) and (111). We have seen that the
interface conductance for the well matched minority spin channel exhibits only limited
amount the orientation dependence. What is more the ordering of the calculated
values, G↓

(011) < G↓
(111) < G↓

(001), follows the ordering of the smaller of the two
Sharvin conductances i.e. the one for minority Fe. In general the transparency of the
Cr|Fe interfaces in minority channel is determined straightfrowardely by the topology
of the Fermi surfaces, that is their overlap in the projection along a given direction.

For the poorly matched majority channel the interface conductances not only
do not follow the ordering of the Sharvin conductances but exhibit changes which
are orders of magnitude larger than the changes of the latter quantity. In particular
comparing the numbers in Table 3.2 we see factor two and more difference between
the results for (001) and for (110) and (111) interfaces. As we have discussed in the
earlier sections this increase can be attributed in the large part to the activation of the
large, central 6th Fermi surface of Fe. For the latter two interfaces it can contribute
substantially to the total transmission as seen most clearly in Fig. 3.7. The states
from which the transmission originates belong to the 4th and (depending on the
orientation) 3rd bands of Cr. We have already pointed out one reason for which such
change can occur while discussing, in Sec. 3.3.2.ii), the changing character of states
along the diagonal of (001) 2D BZ. We have seen that when going away from the ∆
(Γ−H) direction the gradual lowering of the symmetry of the ∆1-derived states in Fe
and the simultanous evolution of the Cr states resulted in increasing the transmission.
The effect is however moderate whereas e.g. for (110) orientation we see that the
transmission is close to one from the very onset of the overlap between Cr’s 4th and
Fe’s 6th bands. We conclude therefore that simply changing the orientation of the
interface along which the states are to be matched is enough to substantially alter the
transmission between the same groups of states. This conclusion is of course hardly
surprising for transition metals with states of non-trivial symmetry. Nonetheless,
It is perhaps useful to present the cartoon picture of how such change can appear
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Figure 3.10: Schematic illustration of the origin of the scattering anisotropy for
(001) and (110) interfaces. The plane of the drawing is assumed to be (1̄ 10)

concentrating on (001) and (110) as the extreme cases.

As we have seen the states in the 6th FS of Fe are derived from the ∆1 state and
consequently are going to be dominated by the s, pz and d3z2−r2 orbitals at least for
k‖ points close to the center of the (001) 2D BZ. The ∆5 and ∆2′ derived states in Cr
on the other hand are going to have substantial px(y), dxy, dxz and dyz contributions.
For the sake of present discussion we are assuming the system of coordinates defined
in Fig. 3.4 with x,y and z axes along [100], [010] and [001] directions respectively.
Concentrating, as we did in Sec. 3.3.2.ii), on the states with k vectors parallel to
the (1̄10) plane we get the Cr and Fe states even with respect to that plane, which
in the case of Cr means equal contribution from orbitals oriented along the x and y
axes - px(y) and dx(y)z. Let us assume further that that we consider states which do
not deviate too much from the Γ − H ([001]) direction. In Figure 3.10 we compare
the matching of the dxz and dyz in Cr with the pz orbital in Fe through the two
interfaces. In the case of (001) orientation the basic symmetry dictates orthogonality.
The same holds also for s and d3z2−r2 orbitals with their full axial symmetry along
[001] direction. However, when pz orbital faces the Cr states across (110) interface,
we see that it possesses the same basic modulation along [001] direction as the even
combination of dxz and dyz orbitals. The same argument could be also given for
other orbitals. Therefore, changing the orientation of the interface from (001) to
(110) removes the orthogonality of states in question. Our simplistic cartoon neglects
the geometry of the bcc lattice, however even if it is taken into account the result
remains the same.
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This basic effect coupled with the changes in the orbital composition, discussed
in Sec. 3.3.2.ii), account for the “activation” of the 6th FS of majority Fe states and
the increase of the conductance.

3.3.3 Disordered interfaces

All experimental systems are bound to exhibit certain amount of disorder. It is
therefore necessary to extend our study to the case of non-specular interfaces. Va-
rious kinds of disorder are in principle possible at the interfaces between two metals
with very limited amount of information about the detailed structure of the interface
is available from experiment to guide theorist. However, there is an experimental
evidence indicating that there is a significant intermixing of Cr and Fe atoms at the
interface [59, 60]. For our lattice matched Cr|Fe system we choose to study substitu-
tional disorder by placing one or more monolayers of random CrxFe1−x alloy at the
interface where x is allowed to vary between layers. The alloy is modelled using large
(typically 16 × 16) lateral supercells repeated periodically in plane. Having establi-
shed, in the previous sections, the amount of variation between spd and spdf results
we restrict ourselves now to the smaller spd basis set. The uncertainty of the results,
when averaged over 20 configurations of disorder, is about 0.05% for the minority
spin channel and 3.80% for majority spin case which is comparable to the errors
associated with LDA and ASA approximation.

In the bottom rows of Table 3.2 we list the results of the calculations with the
two monolayers of 50%-50% (x = 0.5) alloy introduced at the interface. For the
three low index orientations considered, the interface disorder has practically no ef-
fect on the well-matched minority spin channel. The change in the interface conduc-
tances and resistances is insignificant. For example, for (001) orientation the values
for sharp and disorder interfaces are 0.352 versus 0.355 ×1015 Ω−1m−2 and 0.961
versus 0.930 f Ωm2, respectively, for the interface conductances and resistances with
an spd-basis set. The situation if fairly similar for (110) and (111) interfaces. This
is not surprising – the minority electrons crossing the interface experience only very
modest potential step. Consequently mixing of the atoms, and associated atomic
spheres potentials, at the interface is going to have only very minor effect on the
motion of the carriers. In poorly matched majority channel on the other hand we
see more substantial effects. In all three cases the disorder increases the interface
conductance. The effect is modest for (110) and (111) orientation but surprisingly
large for (001) case where we see factor two difference in conductance between clean
and disordered case. The associated change of interface resistance is even larger and
reaches factor of three. This effect was previously reported by Xia et.al in Ref. [47]
but at the time the authors were able to offer only qualitative discussion of its origin.
We see also that the disorder substantially reduce the differences between different
orientations.

In order to better understand the effect of disorder on transmissions and inter-
face resistances, we have separated the ballistic or specular (k‖-conserving) from the
diffuse (k‖-nonconserving) transmission through the disordered interfaces according
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Figure 3.11: Interface conductance (a,b,c) (in units of 1015 Ω−1m−2) and resis-
tance (d) (in units of f Ωm2) of disordered Cr|Fe (001) interface with disorder mo-
deled in a 16 × 16 lateral supercell as a function of the concentration x (in percent)
of Cr in Fe. Results are shown for three different models, described in the text, with
disorder in 1, 2 or 4 MLs. Only a single disorder configuration was used. The total
conductance (� for majority and • for minority electrons) is resolved into specular
(M for majority and O for minority electrons) and diffuse (N for majority and H
for minority electrons) components.

to [25, 61, 62].

G = Gs +Gd =
e2

h

∑
µν
k‖

Tµν(k‖,k‖) +
e2

h

∑
µν

k‖ 6=k′‖

Tµν(k‖,k′‖) (3.4)

where k‖ and k′‖ belong to the two dimensional Brillouin zone for (1× 1) translatio-
nal periodicity and Tµν(k‖, k′‖) = tµν(k‖, k′‖)t

†
µν(k‖, k′‖). In the absence of interface

disorder, there is by definition only specular component.
We are going to consider three different models of interface disorder. These are: i)

1 ML of Cr1−xFex, ii) disorder modelled by 2 MLs: Cr1−xFex|CrxFe1−x and iii)
disorder spread across 4 MLs: Cr1− x

3
Fe x

3
|Cr1− 2x

3
Fe 2x

3
|Cr 2x

3
Fe1− 2x

3
|Cr x

3
Fe1− x

3
(see

Fig. 2.8). The results reported in Table 3.2 correspond to the 2 ML model with
x = 0.5.
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The results of calculations for the most interesting (001) case are shown in Fig. 3.11.
For the minority channel we see that the transmission remains almost perfectly spe-
cular for all three models of the disorder and for all values of x. In the case cor-
responding to the results of Table 3.2 (2 ML, x = 0.5) the specular component of
the interface conductance is 0.352 1015 Ω−1m−2 while the diffuse component is only
about 0.003 1015 Ω−1m−2.

In the majority channel we observe the reduction of the specular component.
It remains, however in the same range of values as for the sharp interface even for
x = 0.5. The increase in the total conductance/transmission comes from the diffusive
part, which overcomes the specular one already for concentration in the range of 10%.
This is true even for relatively weakly disordered 1 ML case. Once the concentration
reaches 50% the total conductances are roughly comparable, with the 4 ML case being
the largest. This is seen as well for the interface resistances [panel d)] where the three
models converge around the same value in the middle of the plot. Not surprisingly
the ratio of diffusive to specular components is also largest for the 4 ML model.
Interestingly in this case we see the signs of saturation of the total conductance and
resistance which suggests that only limited number of channels can be opened by the
disorder before the effect is cancelled by the increased backscattering.

We conclude that the observed increase of the conductance through Cr|Fe interface
is mediated by the large diffusive component of the transmission in the presence of
interface disorder. This is consistent with the fact that the low conductance of the
specular (001) interface was related in large part to the incompatible symmetries of
the states in Cr and majority states in Fe. Diffusive scattering allows electrons to
circumvent this obstacle. For (110) and (111) interfaces where the transparency was
higher to start with, the effect of disorder is more modest.

3.4 Interfaces with fcc materials: Cu|Co, Cu|Ni and
Co|Ni

This section focuses on the transport properties of interfaces between lattice-
matched materials with fcc crystalline structure, namely Cu|Co, Cu|Ni and Co|Ni.
The results of calculations will be presented for (001), (011) and (111) interfaces.
Note that an extended study of the Cu|Co (111) interface is reported in a Chapter 2.

3.4.1 Technical aspects

The calculation of the electronic structure for each system is carried out using
the common lattice constant equal to that of the substrate. We have neglected any
tetragonal distortions that may arise from small differences between the two lattice
parameters. For Cu|Co and Cu|Ni, where Co has an fcc lattice, we used the expe-
rimental lattice constant (3.614 Å) of bulk fcc Cu for both materials. For Co|Ni we
take a = 3.549 Å which corresponds to the experimental volume of bulk hcp Co. The
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Figure 3.12: Electronic band structure (left panel) and density of states (right
panel) of fcc Cu. The band structure is characterized by a fully occupied d band.
The Fermi level (dashed horizontal line) lies within the sp-band.

self-consistent potentials and spin-densities were obtained using an spd basis and the
von Barth and Hedin functional for the exchange-correlation potential.[63] We model
disorder at interface using two monolayers containing a 50%-50% substitutional alloy
where the potentials were determined using CPA. The potentials of Cu, Co and Ni
leads are determined in a separate bulk self-consistent calculations. Lateral supercell
of 10 × 10 was used in the transport calculations for the disordered systems. A de-
tailed study of various parameters that may influence the convergence of the results
were presented and discussed for the Cu|Co (111) system earlier in Chapter 2.

Below we briefly discuss the main features of the bulk electronic structure crucial
for determining the propagating states in the leads. The bulk band structure and the
density of states of the Cu, Co and Ni fcc leads are shown in Figs. 3.12 and 3.13 .
The band structure of non-magnetic Cu is characterized by a fully occupied d band
and the presence of a dispersive sp-band, similar to a free-electron band, crossing the
Fermi level. In contrast to what was seen for bcc Cr and Fe in Fig. 3.1, this time the
majority-spin bands of magnetic elements, Co and Ni, are similar to the bands of
non-magnetic metal (Cu) with sp band being at the Fermi energy. Consequently for
these systems the majority electrons form a low resistance channel. These bands are
also distinguishable by a very low density of states at the Fermi energy (Figs. 3.12
right panel and Figs. 3.13b,f). The latter, though, lies within the d-bands of minority-
spin electrons. For these electrons there is a strong sp-d hybridization which mixes
the sp and d states. The bands in the minority spin case are characterized by a high
density of states as shown in figures 3.13d,h and are expected to match poorly with
the states in Cu.
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Figure 3.14: Top and bottom rows : FSs of fcc Cu and majority spin Co viewed
along the [001] and [011] directions with a projection of the bulk bcc Brillouin zone
(BZ) (solid lines) onto a plane perpendicular to these directions; 2D BZ (dashed
lines) for both orientations is shown against the projection of the bulk BZ. Middle
Panels: FS projections onto a plane perpendicular to the [001] (a,b) and [011] (d,e)
directions of the Cu and Co majority-spin folded into the 2D BZ. The number of
propagating states is shown using the color scale; k‖-resolved transmission proba-
bility for majority-spin states, T (k‖) for an fcc Cu|Co (001) and (011) oriented
interfaces, respectively.

3.4.2 Magnetotransport results

In this section we present the results of the calculations of the transmission pro-
babilities, interface conductances and resistances for (001), (011) and (111) oriented
interfaces for both majority- and minority-spin channels. The effect of disorder on
these quantities will be addressed and we will discuss the ballistic versus diffuse
scattering.

3.4.2.i) Majority-spin channel

Figures 3.14–3.16 show the bulk FSs of Cu and Co and Ni majority electrons
viewed along the appropriate direction, their projections folded into the 2D BZs and

k‖-resolved transmission probabilities (T (k‖)) through the interfaces for (001), (110)
and (111) orientations. We skip (111) interface for Cu|Co system as it was extensively
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A|B GA GB GA|B 2AR
Cu|Co (001) 0.554 0.486 0.456(0.454) 0.26(0.27)
majority (011) 0.588 0.502 0.456(0.456) 0.35(0.35)
afcc = 3.614 Å (111) 0.559 0.466 0.434(0.432) 0.34(0.35)
Cu|Co (001) 0.554 1.107 0.318(0.318) 1.79(1.79)
minority (011) 0.588 1.035 0.310(0.347) 1.89(1.55)
afcc = 3.614 Å (111) 0.559 1.047 0.364(0.314) 1.38(1.81)
Cu|Ni (001) 0.554 0.474 0.442(0.435) 0.31(0.34)
majority (011) 0.588 0.491 0.434(0.430) 0.44(0.46)
afcc = 3.614 Å (111) 0.559 0.453 0.403(0.399) 0.48(0.51)
Cu|Ni (001) 0.554 1.330 0.426(0.418) 1.07(1.11)
minority (011) 0.588 1.290 0.399(0.409) 1.27(1.21)
afcc = 3.614 Å (111) 0.559 1.258 0.429(0.389) 1.04(1.28)
Co|Ni (001) 0.493 0.491 0.487(0.487) 0.02(0.02)
majority (011) 0.508 0.505 0.503(0.503) 0.01(0.01)
afcc = 3.549 Å (111) 0.469 0.465 0.463(0.462) 0.02(0.02)
Co|Ni (001) 1.153 1.387 0.561(0.567) 0.99(0.97)
minority (011) 1.069 1.343 0.598(0.616) 0.83(0.78)
afcc = 3.549 Å (111) 1.082 1.315 0.634(0.585) 0.74(0.87)

Table 3.3: The Sharvin conductances, interface conductance (in units of
1015 Ω−1m−2) and the interface resistance [10] AR (in units of f Ωm2) for ideal
and for disordered (in brackets) interfaces .

discussed in Chapter 2. The calculation of the interface conductance was carried
out by performing the summation in Eq. (3.1) over the 2D BZ represented by the
dashed figures shown in the corner panels of Figs. 3.14 and 3.15. The results of these
calculations are summarized in Table 3.3.

In the absence of disorder, the transverse momentum (k‖) is conserved and the
upper limit of transmission is given by the number of states available at the sides of
the interface. These numbers are denoted using color coding on the projected FS plots
(Figs. 3.14– 3.16). In all three metals the majority-spin electrons are characterized
by a simple Fermi surfaces which can be described as (distorted) spheres with necks
extending towards the boundaries of the bulk BZ. Even though this FSs are single-
sheeted, i.e. there is only one band at the Fermi energy, when the FS is folded into
2D BZ we can have up to two states per k‖ point. This happens most notably for
(110) orientation and to a lesser extent for (001). For these interfaces the transmission
can be as high as 2. From Figs. 3.14, 3.15 and 3.16 we see that the transmission is
very high all throughout the 2D BZs and is limited only by the overlap between
projected FSs and the number of states available on both sides of the interface. This
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Figure 3.15: Fermi surfaces, their projections in 2D BZs and k‖-resolved transmission
probability for Cu|Ni (001), (011) and (111) interfaces for majority spin electrons.

Figure 3.16: Fermi surfaces, their projections in 2D BZs and k‖-resolved transmission
probability for Co|Ni (001), (011) and (111) interfaces for majority spin electrons.
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is of course understandable in view of the similarities between the respective band
structures.

In the case of Cu|Co, the uniformly good transmission yields, using Eq. (3.1),
the interface conductance of 0.456 × 1015 Ω−1m−2 for (001) and (110) orientations
and 0.434× 1015 Ω−1m−2 for (111). Similar values (see Table 3.3) and their ordering
were obtained for majority Cu|Ni and Co|Ni systems. The average transmission from
Cu into Co for (001), (110) and (111) orientations are respectively 0.82, 0.78 and
0.78 and from Co into Cu: 0.93, 0.90 and 0.93. The values for Cu|Ni are very similar
and for Co|Ni they approach unity. Comparing the values in first three columns of
Table 3.3 we see that the interface conductance for majority channel follows closely
the smaller of the two Sharvin conductances. The interface resistances (last column
of Table 3.3) are low (compared e.g. to Cr|Fe system) or, in case of Co|Ni negligible,
and like conductances depend very little on the orientation.

The presence of disorder at the interfaces has essentially no effect on the transmis-
sion for the majority-spin case. The change in the interface conductances and resis-
tances is insignificant. If one decomposes the scattering into ballistic and diffuse com-
ponents one clearly sees that the specular scattering remains strongly dominant. In-
deed, using eq. (3.4) and considering the example of (001) oriented interface, the spe-
cular part of the interface conductance is 0.442 ×1015 Ω−1m−2 while that of the dif-
fuse part is 0.012 ×1015 Ω−1m−2 for Cu|Co interface, 0.409 and 0.026 ×1015 Ω−1m−2

for Cu|Ni (001) interface. Similar values were obtained for other orientations.
In case of Co|Ni the scattering is purely ballistic along the three low index orien-

tations. The (small) change in the interface resistance is noticeable only for Cu|Ni
system, where we see about 10%, 5% and 6% enhancement compared to the values
determined, respectively, for (001), (011) and (111) sharp interfaces. This is of course
hardly surprising in view of the close similarity of the band structures discussed
above which suggests that electrons passing through the interface experience only
minor change of the effective potential. Consequently, mixing the atomic species at
the interface (interdiffusion) will not substantially change the potential landscape
and will not change the scattering behaviour of the electrons.

3.4.2.ii) Minority-spin channel

The minority-spin bands of Co and Ni are characterized by a strong hybridiza-
tion mixing the sp and d orbitals at the Fermi energy. As seen from Figs. 3.12 and
3.13c,g, there is a large band mismatch between Cu and minority states in Co, and
consequently the transmission of the minority-spin channel is expected to be poor.
This is mostly true also for Cu|Ni interface although the situation here is less clear
becuse of the relatively weak exchange splitting of the Ni’s band structures. The case
of Co|Ni system is exceptional since the band structures exhibit exchange-splitting
in both metals. The minority- and majority-spin bands of these materials can be
qualitatively seen as rigidly shifted in energy with respect to each other (Fig. 3.13).
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Figure 3.17: k‖-resolved transmission probability for CuCo (001) and (011) in-
terfaces for minority spin electrons.

Figures 3.17–3.19 show the minority-spins Fermi surfaces and transmission pro-
babilities for Cu|Co, Cu|Ni and Co|Ni interfaces. The calculated conductances and
resistances are summarized in Table 3.3.

The large values of minority-spins densities of states are reflected also in the
values of Sharvin conductances. The calculated values are twice as large in the case
of Cu|Co system and almost three times as large for Cu|Ni and Co|Ni systems (see
Tab. 3.3) as their majority-spins counterparts.

Concentrating first on the Cu|Co interface we see that the conductances (Table 3.3)
are noticeably smaller than the majority-spin ones. From Eq. (3.1) we get 0.318, 0.310
and 0.364×1015 Ω−1m−2, for (001), (011) and (111) oriented interfaces, respectively.
Note that this decrease of conductances happens in spite of the larger number of
states (in comparison to majority channel) available in Co. The conductance values
correspond to average transmission from Cu into Co of 0.57, 0.53 and 0.65. When
the transmission is assumed to be from Co into Cu it is much less – 0.29, 0.30 and
0.35 – because of the larger number of propagating states (Sharvin conductance) in
Co. Examining the k‖ resolved transmission probabilities in Fig. 3.17 reveals more
qualitative difference than would be apparent from relatively modest changes in the
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Figure 3.18: k‖-resolved transmission probability for CuNi (001), (011) and (111)
interfaces for minority spin electrons.

Figure 3.19: k‖-resolved transmission probability for CoNi (001), (011) and (111)
interfaces for minority spin electrons.
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total, integrated conductance values. The large differences between the bulk and pro-
jected Fermi surfaces result in complicated patterns of transmission. On one hand we
see the regions of high transmission approaching the upper theoretical limit, given
usually by the number of states in Cu as it tends to be smaller the number of Co
states. On the other hand we also see the areas of 2D BZ where the transmission is
much lower, or just zero. The reduction comes, as we discussed in detail for the Cr|Fe
interface, from either velocity or symmetry mismatch of the states facing each other
across the interface. These areas contribute the overall reduction of the conductances
shown in Table 3.3.

The situation is altered even more with the introduction of the disorder, modeled
as two monolayers of 50%–50% alloy at the interface. The integrated conductances
(shown in brackets in Table 3.3) exhibit only modest changes with the (001) values
unchanged, (011) ones increased and (111) ones decreased in comparison with the
sharp, specular interfaces. Truly qualitative changes become apparent only when we
separate the conductance into the specular and diffusive parts as defined by Eq. (3.4).
With the introduction of disorder at the Cu|Co(001) interface the specular conduc-
tance of the minority-spin channel drops from 0.318 to 0.058 × 1015 Ω−1m−2. The
decrease in the specular component is exactly compensated by the diffuse contri-
bution of 0.260 × 1015 Ω−1m−2. The interplay between specular and diffusive parts
generates the changes in total transmission seen for (011) and (111) interfaces. The
most important result however is that even in the presence of relatively weak disorder
considered here the scattering in minority channel at the Cu|Co interfaces becomes
predominantly diffusive which results in the loss of coherence.

Comparing now the interface resistances, calculated using Eq. (3.2), for majority
and minority spins we see the differences which by far exceed those seen for conduc-
tances. For these quantities, suitable for parameterization of interfaces embedded
in the diffusive system, the spin-dependency comes from the Sharvin conductances,
that is the numbers of channels (states) available in a given material. As we have
commented earlier Sharvin conductances for magnetic materials are indeed strongly
spin-dependent – see the GB column in Table 3.3.

Inspecting now the minority-spins transmission plots for Cu|Ni (Fig. 3.18) we
see that while they exhibit relatively reach structure, reflecting the complexity of
multiple-sheet minority-spins FS of Ni, (Fig. 3.15), the transmission values tend to
be high. In fact comparing the numbers given in Table 3.3 we observe that while the
conductance in majority channel is higher than the minority one for (001) and (011)
orientations the situation is reversed for (111) orientation. In general the majority and
minority values are rather close in spite of substantial differences seen in the densities
of states [Figs. 3.12 and 3.13f),g)] and Sharvin conductances. We can understand
this situation by noticing that while the relatively weak exchange splitting in Ni is
sufficient to place the minority d -band at the Fermi energy, it is not quite strong
enough to entirely displace the bands of similar character in Cu and Ni. This can
be seen e.g. along the Γ − K direction, equivalent to the center of the 2D BZ for
(011) interface, where the same Σ1 states in both Cu and Ni are present at the Fermi
energy. In comparison these states in Co are shifted away from the Fermi level which
results in the zero transmission region visible in the center of Fig. 3.17f).
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Similarly as for Cu|Co, the disorder can either diminish [(001) and (111)] or
increase, (011), the interface conductance with changes being rather modest in ma-
gnitude. Decomposing the conductance for disordered (111) interface, equal to 0.389
1015 Ω−1m−2, into the specular and diffusive components we obtain 0.229 for the for-
mer and 0.160 1015Ω−1m−2 for the latter. In this case the specular conductance drops
by almost 50% in comparison to the sharp interface but, unlike for Cu|Co system, it
is not dominated by the diffusive contribution. The decomposition for (001) interface
yields comparable numbers, that is 0.260 and 0.158 1015 Ω−1m−2 respectively.

As in the Cu|Co case, the interface resistances show greater degree of spin-
dependence than one would suspect comparing only interface conductances. As pre-
viously it is related to the spin-dependence of Sharvin conductances.

The minority-spin interface conductance in case of Co|Ni interfaces are larger than
those for the other two fcc systems, Cu|Co and Cu|Ni. However, when compared to the
number of states (Sharvin conductances) available at both sides of the interface they
yield average transmission probabilities which are not overly high. Taking for example
(001) interface we get, for specular system, average transmission of 0.49 from Co into
Ni and 0.40 the other way around. This relatively low transmission can be surprising
as, at the first sight, the bulk band structures of Co and Ni [Figs. 3.13c),g)] resemble
each other. However, as we discussed earlier, even the relatively small difference in
their position is in some cases enough to change the character of states present at the
Fermi energy [compare e.g. Γ −K direction in Figs. 3.13d) and h)]. The differences
become more apparent when we compare the Fermi surfaces and their projections
shown in Fig. 3.19. The figures in the left and middle column demonstrate that the
relatively small shift between the two band structures is enough to produce the Fermi
surfaces of notably different character and topology. This results in transmission
probabilities which, as a rule, fall short of their upper theoretical limit (the smaller
of two numbers of states at a given point). As the consequence in spite of the large
Landauer-Büttiker conductance the interface resistance in the minority channel, given
by Eq. (3.2), is much higher than the majority one and assumes values comparable
to those for the other two interfaces.

Also for Co|Ni the effect of disorder in minority channel depends on the orienta-
tion. For (001) and (011) interfaces we observe a small enhancement of the integrated
values of the transmission. As previously the net effect is the result of partial com-
pensation of disorder-induced decrease of specular component by the diffusive contri-
bution. For the (001) interface, the specular component of the conductance decreases
by 48% from 0.561 to 0.290 in units of 1015 Ω−1m−2 while the diffuse part is as large
as 0.277× 1015 Ω−1m−2.

For (111) interfaces the 8% reduction in net conductance results from the decrease
in specular channel from 0.634 to 0.277× 1015 Ω−1m−2 which is only partially made
up for by the appearance of the diffusive part equal to 0.308× 1015 Ω−1m−2.

3.4.2.iii) Conclusions

In the preceding sections we have presented and discussed results of first prin-
ciple calculations of interface scattering for three lattice-matched fcc systems: Cu|Co,
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Cu|Ni and Co|Ni.
The general picture which emerges from comparison of the three cases is that in

the majority channel, with only single sp band at the Fermi energy, the transmission
is uniformly high and the conductance is determined simply by the overlap of the pro-
jections of respective Fermi surfaces along the transport direction. The disorder has
usually negligible effect on this channel and the transmission, for the substitutional
disorder we considered, remains specular.

The minority spin electrons with strongly d -hybridized bands at the Fermi energy
in magnetic elements form high resistance channel as the results of the mismatch
of the electronic structures at the interface. The disorder has only modest effect
on the total conductance which, depending on the system and the orientation, can
either increase or decrease. The main effect is the change of the character of the
conductance. For Cu|Co system the transmission in the presence of interdiffusion is
almost completely dominated by the diffusive scattering. For the other two systems
the specular and diffusive components are roughly comparable. These findings are
of importance e.g. when discussing the validity of the serial resistor model[12–14]
commonly used in the interpretation of CPP-GMR experiments.

It might be worthwhile bringing the reader’s attention to the fact that the rela-
tion between the two transport coefficients – interface conductance and resistance –
given in Table 3.3 is far from trivial. This is especially clearly seen for the case of
Co|Ni interface. For this system we see, when going from majority to minority spins,
an increase of both interface conductance and resistance. This apparent contradic-
tion results from the fact that the two quantities describe the transport properties of
the interface in different physical regimes. The Landauer-Büttiker interface conduc-
tance [Eq. (3.1)] corresponds to the measurements in the point-contact geometry.
The Schep’s et al.[45] formula [Eq. (3.2)] for interface resistance is meant for use
in diffusive systems where the ohmic regime is realized. The renormalization of the
“bare” Landauer-Büttiker term defined by Eq. (3.2) can be seen as subtraction of the
spurious contact resistances inherently present in Eq. (3.1). In spite of its simplicity
Eq. (3.2) was shown in the past to be successful in addressing the experiments usually
carried out in the diffusive regime.

3.5 Energy dependence

We have so far discussed the transport properties of intermetallic interfaces in
the linear response regime. Accordingly we have calculated the interface conduc-
tances and resistances at the Fermi energy, EF . There exist however experiments,
most notably those involving spin valve transistor[64, 65], where electrons cross the
interface at different energies [66]. Motivated by this we will now discuss the energy
dependence of transport through Fe|Cr|Fe (001) and Co|Cu|Co (111) structures with
the thickness of the non-magnetic spacer equal to 10 ML. To this end the transmission
probabilities in Eqs. (3.1) and (3.2) were calculated for the range of energies below
and above the Fermi energy within the rigid band approximation. Common lattice
constants of a = 2.871Å for Fe-based and a = 3.614 Å for Co-based spin valves and
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Figure 3.20: Sharvin conductance (in units of 1015 Ω−1m−2) as a function of
energy for bulk bcc Fe and Cr (001) (left panel) and fcc Co and Cu (111) (right
panel). The Fermi energy (EF ) is set to zero.

spd-basis set were used. We considered both parallel (P) and antiparallel (AP) ma-
gnetic configurations of the magnetic moments of ferromagnetic leads. The disorder
was modeled using 2 MLs of 50%-50% alloy at the interface.

Figure 3.20 shows the Sharvin conductances, calculated using Eq. (3.3), for the
bulk bcc Fe, Cr along [001] and fcc Co, Cu along [111] direction as a function of energy.
Comparing these with the densities of states (DOS) shown in Fig. 3.1, 3.12 and 3.13
we notice that there exists a rough correspondence between the two quantities. For
the energies which, for the given metal and the spin channel, lie within the range of
the d -bands the Sharvin conductances tend to be large and vary strongly with the
energy. The minima of the curves for Fe and Cr correspond to the equivalent features
seen in DOS. For the energies above the d -bands range the curves become smoother
and the values generally smaller. This happens at about 0.5 eV above EF , set here
to zero, for Fe majority and 2.5 eV for Fe minority and Cr. The corresponding values
for fcc metals are about -1.2, -0.4 and 1.2 eV for Cu, Co majority and minority
respectively. We note however that there is no simple proportionality between DOS
and Sharvin conductance.

The interface conductances and resistances are shown in Fig. 3.21 as functions
of energy for sharp and dirty interfaces in Fe|Cr|Fe (001) and Co|Cu|Co (111) spin
valves. Starting with Fe|Cr|Fe we observe that for energies above -1.5 eV the mino-
rity channel dominates the conductance in the parallel configuration. This follows
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Figure 3.21: Interface conductance (in units of 1015 Ω−1m−2) and resistance
(in units of 10−15 Ωm2) as a function of energy for parallel (P) and antiparallel
(AP) coupling between the magnetizations of the ferromagnets in bcc Fe|Cr|Fe (001)
(left panel) and fcc Co|Cu|Co (111) (right panel) oriented interfaces. The data of
calculations with sharp (dirty) interfaces is represented by solid (open) symbols. The
Fermi energy, here the reference energy, is set to zero.

from the similarities of the respective electronic structures discussed in the prece-
ding sections. The good transmission through both interfaces results in the curve
which retains some resemblance to the Sharvin conductances shown in Fig. 3.20,
with maxima in the positions determined by the superimposition of the Sharvin
conductance curves for Fe minority and Cr. The conductance of the poorly matched
majority channel is typically much smaller and, for energies within the range of Fe
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majority d -bands, does not resemble either of the Sharvin conductances. The curve
for AP configuration is seen to follow roughly the smaller of the two conductances
for P configuration, that is Gmaj for energies below -1.5 eV and Gmin above that
value. The disorder has negligible effect on majority channel in P configuration and
tend to increase the conductance in P minority and (more strongly) in AP case. For
the two latter cases the disorder reduces the energy dependence making the curves
smoother. This is seen more clearly in the interface resistances [Fig. 3.21c) and d)].

The magnetoresistance is defined as

MR =
Gmaj +Gmin − 2GAP

2GAP
(3.5)

where Gmaj and Gmin are the interface conductances in the P configuration and GAP

is the interface conductance of either spin in the AP configuration. The magnitude of
MR, at EF , is found to be 163% for sharp interfaces and decreases substantially to
32% with defect scattering. In the P configuration, the specular component of the in-
terface conductance for majority channel decreases by as much as 85%, dropping from
0.132 to 0.02×1015Ω−1m−2 while the diffuse component is 0.153×1015Ω−1m−2. The
interface conductance of the minority-spin channel remains almost unchanged, the
specular conductance decreases by less than 2%, from 0.344 to 0.338× 1015 Ω−1m−2.
Disorder has much larger effect in the AP than the P configuration. The specular com-
ponent of the interface conductance decreases by as much as 95%, it drops from 0.091
to 0.004 in units of 1015 Ω−1m−2 while the diffuse component is 0.157×1015 Ω−1m−2

for either spins.

In the case of Co|Cu|Co (111) spin valve [Fig. 3.21e)–h)] the transmission in P
configuration is dominated by the majority-spin channel in the entire energy inter-
val considered. The difference between the two spin-channels depends strongly on
the energy changing from very modest e.g. for energies around 0.5 and -1 eV to
very substantial (factor 2 and more) below -2 eV. Above the range of the d -bands
(above -0.5 eV for majority and 1 eV for minority spins) both curves become smoo-
ther reflecting the free-electron like of the respective bands. For energies above 1 eV
when the d -bands are left behind for both spin-channels the conductances start to
converge slowly. However, the polarization remains non-zero up until the 3 eV that
is in the whole energy range considered here. Similarly as in the case of Fe|Cr|Fe the
AP conductance resembles the low-conductance channel in P configuration, i.e. for
Co|Cu|Co the minority spin conductance. The disorder tends to lower the conduc-
tance in the P configuration and has more pronounced effect on the minority channel.
In the AP case it can either decrease or increase the conductance and is seen to ave-
rage out the quasi-oscillations of the curve. The MR, at the Fermi energy, is predicted
to be low, about 28% for sharp interfaces. This value decreases to about 22% for di-
sordered interfaces. In the P configuration, defect scattering has a very small effect
on the total transmission for the majority-spin electrons. The specular component
of the interface conductance in this channel decreases by only about 7%, it drops
from 0.427 to 0.398 in units of 1015 Ω−1m−2 while the diffuse component, very small,
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Figure 3.22: k‖-resolved transmission probability for CoCuCo (111) (left panel)
and FeCrFe (001) (right panel) trilayers at the Fermi energy. (a,d) both spins in
antiparallel configuration; (b,e) Majority spin and (c,f) minority in the parallel
configuration.

is 0.021 × 1015 Ω−1m−2. In the case of the minority-spin channel, the scattering is
dominated by the diffuse component, which is 0.205 × 1015 Ω−1m−2. The specular
component decreases by as much as 96%, it drops from 0.307 to 0.012 in units of
1015 Ω−1m−2. For the AP configuration, the effect of disorder is much stronger, the
ballistic component decreases by as high as 85%, it drops from 0.288 to 0.042 in units
of 1015 Ω−1m−2 while the diffuse part is about 0.220× 1015 Ω−1m−2.

The transmission probabilities as a function of the transverse momentum k‖ are
shown in Fig. 3.22 for either spins in the AP configuration [panel a) and d) ] majority
and minority spins in the P configuration [panels b), c), e) and f)]. Comparing these
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plots with the single interface transmissions shown for Cr|Fe in Figs. 3.4 and 3.5 and
for Cu|Co in Figs. 5 and 6 of Ref. [36] we see that the spin valve transmissions for
P configuration retains basic resemblance to their single interface counterparts. The
AP transmissions can be seen as intermediate case between majority and minority
spins transmissions. The multiple reflections in the non-magnetic spacer give rise to
the interference patterns visible especially clearly for Co|Cu|Co in P configuration.

3.6 Discussion and Summary

In this section we compare our results to the existing data in the literature.
Different first-principles techniques based on the Landauer-Büttiker’s and/or Schep’s
formulae [45] were used to calculate the spin-dependent specular interface resistance
using transmission probabilities. The results of these calculations through various
metallic interfaces along different orientations are given in Ref. [36, 45–48, 53, 54, 67].
While there is a general agreement on the magnitude of the obtained values but there
remain small discrepancies which are ascribed to the difference in the computation
techniques used. Comparison of the present work and the earlier mentioned results
is found to be in a good agreement with experiments [11, 68] for specular interfaces
Cu|Co and Fe|Cr systems. This agreement is improved by including disorder at the
interface, present work and Ref. [36, 47].

The effect of disorder on conductance through interfaces Cu|Co and Fe|Cr along
[001] orientation has been studied by different authors [20–22, 25, 33, 69, 70]. As
reported previously by Xia et al. [47], and seen recently by Velev et al. [25], substitu-
tional disorder at the interfaces reduces the interface conductance in case of Cu|Co
system but enhances it in case of the majority spin channel of Fe|Cr and minority
spin channel for Cu|Co, Cu|Ni and Co|Ni systems along [011] orientation. For the
latter case the change is rather modest. By far Cu|Ni and Co|Ni systems are the
less studied systems compared to the other two systems presented in this work. Only
few theoretical [26, 46, 54, 71] and experimental transport studies [72, 73] have been
carried out for these two systems, Cu|Ni and Co|Ni.

An interesting effect is that observed in the transport of hot-electrons in the spin
valve transistor structures made of Cu/Co system. An effect of more than 390% CPP
magnetocurrent was measured by Monsma et al. [65, 74] in the spin valve transistor.
In this device the carriers were injected at an energy of 0.7 eV, fixed by the height of a
Schottky barrier. At an energy of about 0.8 eV above EF we obtain a magnetocurrent
(CPP-GMR at a fixed energy) of 253% which decreases to about 45% with disorder
at the interfaces.

In summary, we have studied the spin-polarized transport properties in a series
of lattice matched materials, namely Cr|Fe, Cu|Co, Cu|Ni and Co|Ni systems along
[001], [011] and [111] orientations. We have observed a strong spin dependence for all
the systems studied and an orientation dependence of the interface conductance in
Cr|Fe system. The interface conductance for sharp interfaces is 2 and 3 times, respec-
tively for (011) and (111) interfaces, larger than that of Cr|Fe (001). This anisotropy
in the conductance is completely destroyed by defect scattering at the interface. De-
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pending on the system and the crystallographical orientation, substitutional disorder
at the interfaces can increase or decrease the interface conductance and reversely
the interface resistance. Concentrating on the more particular Cr|Fe (001) interface
we have carried out a detailed study of the effect of defect scattering on the trans-
port properties. Ballistic versus the diffusive components of the interface transmission
were separated. We found that the increase of the conductance is mediated by a large
diffusive component of the interface transmission in the presence of disorder. This is
a consequence on the fact that the Cr|Fe (001) interface is characterized by a large
mismatch in the majority band structure of Fe and that of Cr. The interface resis-
tance is reduced by disorder by a factor 3. The effect of disorder on (011) and (111)
interfaces is much smaller. In the last part we have presented the energy dependence
of the transmission in the Fe|Cr|Fe (001) and Co|Cu|Co (111) trilayers. The results
are analyzed in terms of the bulk density of states and the band structures. The effect
of disorder was considered too.
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Matter Theory, edited by F. Bassani, F. Fumi, and M. P. Tosi, pp. 59–176,
North-Holland, Amsterdam, 1985.

[57] D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).
[58] J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
[59] A. Davies, J. A. Stroscio, D. T. Pierce, and R. J. Celotta, Phys. Rev. Lett. 76,

4175 (1996).
[60] D. Venus and B. Heinrich, Phys. Rev. B 53, R1733 (1996).
[61] P. Bruno, H. Itoh, J. Inoue, and S. Nonoyama, J. Magn. & Magn. Mater. 198-

199, 46 (1999).
[62] V. Drchal et al., Phys. Rev. B 65, 214414 (2002).
[63] U. von Barth and L. Hedin, J. Phys. C: Sol. State Phys. 5, 1629 (1972).
[64] T. Banerjee, E. Haq, M. H. Siekman, J. C. Lodder, and R. Jansen, Phys. Rev.

Lett. 94, 027204 (2005).
[65] R. Jansen, J. Phys. D: Appl. Phys. 36, R289 (2003).
[66] W. H. Rippard and R. A. Buhrman, Phys. Rev. Lett. 84, 971 (2000).
[67] G. E. W. Bauer, K. M. Schep, K. Xia, and P. J. Kelly, J. Phys. D: Appl. Phys.

35, 2410 (2002).
[68] A. Zambano, K. Eid, R. Loloee, W. P. Pratt, Jr., and J. Bass, J. Magn. & Magn.

Mater. 253, 51 (2002).
[69] E. Y. Tsymbal, Phys. Rev. B 62, 3608 (2000).
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Chapter 4

Orientation-dependent
transparency of metallic
interfaces

As devices are reduced in size, interfaces start to dominate electrical transport making it es-
sential to be able to describe reliably how they transmit and reflect electrons. For a number of
nearly perfectly lattice-matched materials, we calculate from first-principles the dependence of
the interface transparency on the crystal orientation. Quite remarkably, the largest anisotropy
is predicted for interfaces between the prototype free-electron materials silver and aluminium
for which a massive factor of two difference between (111) and (001) interfaces is found.

4.1 Introduction

A recurring theme in condensed matter physics in the last twenty years has been
the discovery of new physical effects and properties in systems with reduced dimen-
sions; the prospect of exploiting these effects and properties in logical processing,
sensing and storage devices is an important driving force behind nano-science and
-technology. In semiconductors, the electronic structures of the electrons responsible
for conduction can be described using simple models. The same is not true of the
ferromagnetic transition metals which form the basis for magnetoelectronics. It is the
non-trivial spin-dependence of the transmission and reflection of electrons at magne-
tic interfaces which provides the key to understanding phenomena such as oscillatory
exchange coupling, giant- and tunneling- magnetoresistance, spin transfer torque,
spin-pumping and spin injection [1]. For well-studied material combinations such as
Co|Cu and Fe|Cr, modest spin-dependence of the interface transmission [2–4] of the
order of 10-20% is sufficient to account for experimental observations [5].

However, the confrontation of theory and experiment just referred to is at best
indirect and model-dependent. Even though the theory of transport in small struc-
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tures is formulated in terms of transmission and reflection matrices [6], measuring
interface transparencies directly has proven quite difficult [7]. To identify interfaces
suitable for experimental study, we have undertaken a systematic materials-specific
study of the orientation dependence of the interface transmission between pairs of
isostructural metals whose lattice constants match within a percent or so in the hope
that it will prove possible to grow such interfaces epitaxially.

One of the metal pairs we studied was Al|Ag. Both metals have the fcc crystal
structure and their lattice constants are matched within 1%. Aluminium is a textbook
[8] example of a system well described by the (nearly) free electron model. Silver,
also usually assumed to be a free electron-like material, is a noble metal with high
conductivity which is frequently used for electrical contacting. We found that in spite
of the simplicity of both metals’ electronic structures the transmission through Al|Ag
interfaces can differ quite significantly from the predictions of the free electron model.
In particular, between (111) and (001) orientations we find a factor 2 difference in
interface transmission for clean Al|Ag interfaces. For free electrons the anisotropy
should vanish. Our result is insensitive to interface disorder. We identify a new factor
responsible for this difference which is not related to the standard velocity- [9, 10] or
symmetry-mismatch [11, 12] mechanisms.

A free electron description of interface scattering, in which the effect of the crystal
potential on transport is completely neglected, underlies the BTK theory [13] used to
interpret [9, 10] Andreev reflection (AR) experiments. Point contact AR experiments
are increasingly used to identify the pairing symmetry of superconductors and, in
the field of magnetoelectronics, to determine the polarization of magnetic materials
[14, 15]. Our finding that the electronic structure can have such a large effect on
the interface transmission, implies that experiments should be analysed using more
sophisticated models.

4.2 Method

Our study was based upon first-principles calculations of the interface electronic
structure performed within the framework of density functional theory (DFT) and the
local spin density approximation (LSDA). Bulk and interface potentials were determi-
ned self-consistently using the tight binding linearized muffin tin orbital (TB-LMTO)
[16] surface Green’s function method [17]. We assumed common lattice constants for
both metals of a given structure e.g. aAl = aAg = 4.05 Å. The potentials obtained in
this way were used as input to a TB-MTO wavefunction-matching [4, 12] calculation
of the transmission and reflection coefficients between Bloch states on either side of
the interface. The efficiency of this approach is such that interface disorder can be
modelled using large lateral supercells. For disordered systems, the potentials were
calculated using the layer CPA (coherent potential approximation). The results of the
calculations for a number of lattice-matched materials are summarized in Table 4.1.
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4.3 Orientation dependence of the transmission

The Sharvin conductances, GA and GB , reported in the third and fourth columns
of Table 4.1 are proportional to the number of states at the Fermi level propagating
in the transport direction. They are properties of the bulk materials which are de-
termined by the area of the Fermi surface projections and are a measure of the
current-carrying capacity of the conductor in the ballistic regime. The largest intrin-
sic orientation dependence, seen to be about 13 %, is found for W; for Al and Ag,
respectively, it is less than 8% and 5%.

A|B GA GB GA|B 2SR
Al|Ag (111) 0.69 0.45 0.41 (0.36) 0.64 (0.92)
afcc = 4.05 Å (110) 0.68 0.47 0.30 (0.32) 1.60 (1.39)

(001) 0.73 0.45 0.22 (0.24) 2.82 (2.37)
Al|Au (111) 0.69 0.44 0.41 (0.35) 0.60 (0.99)
afcc = 4.05 Å (001) 0.73 0.46 0.24 (0.26) 2.37 (2.14)
Pd|Pt (111) 0.62 0.71 0.55 (0.54) 0.30 (0.33)
afcc = 3.89 Å (001) 0.58 0.70 0.52 (0.51) 0.37 (0.39)
W|Mo (001) 0.45 0.59 0.42 (0.42) 0.42 (0.42)
abcc = 3.16 Å (110) 0.40 0.54 0.37 (0.38) 0.52 (0.47)
Cu|Co (111)* 0.56 0.47 0.43 (0.43) 0.34 (0.35)
majority (001) 0.55 0.49 0.46 (0.45) 0.26 (0.27)
afcc = 3.61 Å (110) 0.59 0.50 0.46 (0.46) 0.35 (0.35)
Cu|Co (111)* 0.56 1.05 0.36 (0.31) 1.38 (1.82)
minority (001) 0.55 1.11 0.32 (0.32) 1.79 (1.79)
afcc = 3.61 Å (110) 0.59 1.04 0.31 (0.35) 1.89 (1.55)
Cr|Fe (111) 0.61 0.82 0.27 (0.31) 2.22 (1.84)
majority (001) 0.64 0.82 0.11 (0.25) 7.46 (2.55)
abcc = 2.87 Å (110)* 0.59 0.78 0.22 (0.27) 3.04 (2.18)
Cr|Fe (111) 0.61 0.41 0.34 (0.34) 0.93 (0.95)
minority (001) 0.64 0.46 0.35 (0.35) 0.98 (0.95)
abcc = 2.87 Å (110)* 0.59 0.40 0.32 (0.32) 1.03 (1.06)

Table 4.1: Sharvin conductances and interface transmissions in units of
1015Ω−1m−2, interface resistances SR [2, 4] for ideal (and, in brackets, for di-
sordered) interfaces in units of 10−15Ωm2. S is the area of the sample for which
R is measured. Interface disorder was modelled in 10 × 10 lateral supercells with
two layers of 50-50 alloy. The largest uncertainty between different configurations
of disorder is about 2.3%. The values given are for a single spin. For the pairs
of materials and orientations indicated by a (*), comparison of the interface re-
sistances shown in the last two columns with experimental values extracted from
measurement on multilayers by the MSU group [5, 7] yields reasonable quantitative
agreement [2, 4, 12].
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The interface transmission in column five of Table 4.1 is expressed as a conductance,
GA/B = e2/h

∑
µν Tµν , where Tµν is the probability for the incoming state ν in mate-

rial A to be transmitted through the interface into the outgoing state µ in material B.
For most pairs of materials 1 the orientation dependence of GA/B is modest (∼ 15%
for Mo|W) and the interface conductance itself tends to be slightly smaller than the
lower of the two Sharvin conductances. For these systems the behaviour of the trans-
mission appears to be determined by the projection of the Fermi surfaces. However,
this is not so for Al|Ag and Al|Au interfaces. Here we observe a large anisotropy
in the transport properties. The factor 2 difference in transmission between (111)
and (001) orientations 2 results in a factor 4 difference between interface resistances
estimated using the method of [2, 4].

The transmission probability for the (111) and (001) orientations is plotted in
Figs. 4.1c and 4.1f as a function of the wave-vector component parallel to the in-
terface, k‖, within the 2D interface Brillouin zones (BZ). A qualitative difference
between the two orientations can be observed. In the (111) case, the transmission
is almost uniformly high wherever there are states on both sides of the interface.
The (001) orientation exhibits more variation with high transmission in the central
and outer regions of the 2D BZ but much lower in a ring-shaped region in between.
The presence of this “cold ring” is the reason why the total transmission is lower
for the (001) orientation. Explaining the transparency anisotropy of Al|Ag interfaces
requires finding an explanation for the low transmission values in this region of the
2D BZ.

Two mechanisms are usually taken into account when analysing the scattering at
perfect interfaces. The first, velocity mismatch, is the modulation of the transmission
by a factor reminiscent of the free electron formula for the transmission through a
potential step: T = 4vLvR/(vL + vR)2 where vL/R are the components of the Fermi
velocities in the transport direction on the left and right sides of the interface. This
modulation is indeed present in our calculated transmissions but its effect tends to
be noticeable only when one of the velocities is almost vanishingly small. Naive appli-
cation of the free electron formula yields uniformly good transmission 3 independent
of the orientation. Symmetry mismatch, the second mechanism, can suppress the

1. Fe|Cr is an exception. For the majority spin channel, a large orientation dependence of the
interface tranmission is predicted. Unlike in the case of Al|Ag, this result is very sensitive to interface
disorder. In addition, a single spin channel cannot be studied directly making it difficult to obtain
an unambiguous experimental result.

2. We performed an extensive series of total energy calculations using LDA and GGA approxi-
mations to relax the various Al|Ag interfaces. Only a small dependence of the interface energy on
the orientation was found. The transport calculations were repeated using the resulting relaxed
geometries. The effect on the interface transmission is less than 3%, which is negligible on the scale
of the predicted factor of 2 orientation dependence.

3. Morover the free electron formula would lead to the violation of the unitarity of the scattering
matrix (i.e. the conservation of particles) whenever there is more than one state on either side of
the interface.
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Figure 4.1: Top row: Fermi surface projections for (a) Ag, (b) Al and (c) trans-
mission probabilities in 2DBZ for (111) orientation. Middle row: Same for (001)
orientation. The colour bars on the left indicate the number of scattering states in
the leads for a given two dimensional wavevector k‖. The transmission probabilities
indicated by the colour bars on the right can exceed 1 for k‖s for which there is more
than one scattering state in both Ag and Al. Bottom row: Fermi surfaces of (g) Ag
and (h) Al, (i) the interface adapted BZ for (001) and (111) orientations. The verti-
cal dashed line in (c) and on the yellow plane in panel (i) indicate the cross-section
used in the left-hand panel of Fig. 4.2 while the vertical dotted line in (f) and on
the blue plane in panel (i) indicate the cross-section used in the right-hand panel.

transmission between states of incompatible symmetries (e.g. even vs. odd etc.).
Examination of the eigenvectors demonstrates that this is not the case for the Al|Ag
system. For example, states on both sides of the interface, with k‖ along the vertical
dotted line in Fig. 4.1f, are even under reflection in the plane defined by this line and
the (001) transport direction. Their orbital composition (s,py,pz,dyz,d3z2−r2 ,dx2−y2

where the y axis is parallel to the dotted line and z is the transport direction) is
essentially the same for both materials. The same holds for states along other sym-
metry lines/planes and general k‖ points (in the sense of orbital composition). The
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origin of the “cold ring” must be sought elsewhere.

(1,−1,1)

(0,0,2)

(−1,1,1)

(0,0,0)

(1,−1,−1)

(1,−1,1)

(1,−1,−1)

(0,0,2)

(0,0,−2)

(0,0,0)

(−1,1,1)

(−1,1,−1)
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(0,0,−2)

[111] [001](a) (b)

Figure 4.2: Intersection of a (110) plane with the Al Fermi surface and with the
interface adapted BZs indicated in Fig. 4.1i (where the meaning of the dashed and
dotted lines is explained). The labelled dots indicate the positions of the RL sites
with coordinates given in units of 2π/a. The red (blue) lines indicate regions of high
(low) transmission.

In spite of the failure of the free electron transmission formula, this simple model
serves as a useful starting point for analysing the Fermi surface (FS) topologies. In
the simplest possible approach, we model the FS of Ag (shown in Fig. 4.1g) as a
sphere which fits into the first BZ. A larger sphere, accommodating three electrons,
is needed for trivalent Al. In an extended zone scheme, conservation of momentum
parallel to the interface dictates that the transmission through a specular interface
is non-zero only between states with the same values of k‖; these are the k‖-vectors
belonging to the region where projections of the Fermi spheres on a plane perpendi-
cular to the transport direction overlap. For systems with lattice periodicity, we must
use a downfolded FS, with fragments of the original FS sphere back-translated into
the 1st Brillouin zone, a procedure which can be realized geometrically by placing
spheres accommodating three electrons on reciprocal lattice (RL) sites and then only
considering the fragments in the first BZ. Examination of the FS of Al calculated
from first-principles (Fig. 4.1h) and its cross-section (Fig. 4.2) reveals that, in spite of
its apparent complexity, it remains essentially (piecewise) spherical. For some values
of k|| (see Figs. 4.1b and 4.1e), Al can now have more than one propagating state. Ne-
vertheless, in the free electron limit, the downfolded states are strictly orthogonal to
the states in Ag and the total transmission is unchanged. For a reduced zone scheme,
we formulate the following rule: The transmission between states in two (nearly) free
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electron materials which have the same k‖, but originate from reciprocal lattice sites
whose parallel components do not coincide, vanishes in the free electron limit and is
expected to be strongly suppressed for nearly free electron like materials.

Obviously, the truly free electron system can not exhibit anisotropy. However, in
the presence of the periodic potential the original, piecewise-spherical Fermi surface
and consequently the transmission is going to be modified. Firstly, since the wave
functions are no longer pure plane waves, the strict orthogonality of the downfolded
states is relaxed and the transmission can assume finite although typically small
values (hence suppressed instead of zero in the above rule). Secondly, the shape of
the Fermi surface changes with the modifications being strongest in the vicinity of RL
planes where, for Al, we observe the opening of gaps between previously connected
fragments. The anisotropy is mostly related to this second effect.

In Fig. 4.2, we show the intersection of the Al FS with a (110) plane. The two
plots are rotated so that the vertical axis in Fig. 4.2a is the [111] direction while in
Fig. 4.2b it is [001]. In both cases the positions of the nearest RL sites (on which
spheres are centred) are shown together with the cross-section through the relevant
interface-adapted Brillouin zone, which is different for each orientation; see Fig. 4.1i.
We can now readily identify spheres from which various fragments of the Fermi sur-
face originate and mark those fragments with positive (upward) velocities, according
to the rule given above, as having high (red) or low (blue) transmissions. In the
(001) case, the “high” fragments originate from (0,0,0) and (0,0,-2) centred spheres.
Comparing Figs. 4.1f and 4.2b, we note that the position of the gaps opened between
these spheres by Bragg reflection on the (001) and (001̄) planes coincides, in projec-
tion along the [001] direction, with the position of the “cold ring” in Fig. 4.1f. The
other states present in this region originate from (1,-1,-1) (and equivalent) centred
spheres, are therefore nearly orthogonal to states in Ag centered on (0,0,0) and so
have low transmission. In the (111) case however, the large fragments of FS belonging
to the same (1,-1,-1) sphere have high transmissions (Fig. 4.2a) and dominate trans-
port. In addition, the effect of gap-opening is reduced in this orientation because of
the rotation. Combination of these two factors results in the almost uniformly high
transmission seen in Fig. 4.1c.

We can now finally identify the origin of the transmission anisotropy for Al|Ag
interface. It stems from two factors: (i) the near orthogonality of the downfolded Al
states to those belonging to the simple Ag sphere and (ii) the gaps opened in the
continuous free electron Fermi surface by the periodic potential. The latter factor
is of course related to the symmetry of the underlying crystal lattice and directly
responsible for the introduction of the orientation dependence. For Al|Au interfaces,
the interface transmissions and resistances are very similar to the Al|Ag case.

4.4 Summary

The orientation dependence of the interface transmission of six metal pairs with
the same structure and lattice parameter was calculated. For fcc Ag|Al a factor two
difference between the (111) and (001) orientations was found and explained within
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the free electron model. The predicted anisotropic interface resistance and Andreev
reflection (not shown) are not very sensitive to interface disorder and should be
observable experimentally.
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Matter Theory, edited by F. Bassani, F. Fumi, and M. P. Tosi, pp. 59–176,
North-Holland, Amsterdam, 1985.

[17] I. Turek, V. Drchal, J. Kudrnovský, M. Šob, and P. Weinberger, Electronic
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Chapter 5

Parameter-free study of the
electronic, magnetic and
transport properties of a model
spin-valve transistor structure

In the operation of spin-valve transistors (SVT), use is made of the spin-dependent attenuation
of hot electrons in a magnetic material - a volume effect. The downside of this attenuation is
an unacceptably small collector current. Little attention has been paid in this context to spin-
dependent interface scattering which, in the linear response regime, is the origin of the giant
magnetoresistance effect. To gain some insight into the importance of this interface term,
we have studied spin-dependent transmission through a model GaAs|Fe|Cr|Fe|GaAs (001)
SVT structure as a function of energy for clean and disordered metallic interfaces using first-
principles electronic structure calculations. In the absence of disorder and inelastic scattering,
we find large magnetocurrents arising from materials-related symmetry incompatibilites when
the transverse momentum is small as it is in GaAs, but small transfer ratios. Interface disorder
at the metallic interfaces is found to reduce the magnetocurrent but increase the transfer ratio
considerably.

5.1 Introduction

Where conventional electronics is based upon charge transport in semiconductors,
magnetoelectronics is concerned with harnessing the extra degree of freedom provided
by the electron spin to make sensors and memory elements based upon the giant ma-
gnetoresistance (GMR) and tunnel magnetoresistance (TMR) effects. The prospect
of combining the advantages of conventional charge-based, semiconductor electronics
with spin-based, transition metal magnetoelectronics has posed the question of how
best to inject spins into semiconductors [1, 2]. A practical all-semiconductor device
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Figure 5.1: Schematic layout of a spin valve transistor. n-type semiconductor
emitter (SC1: left) and collector (SC2: right) sandwich the metallic spin valve base
(FM1|NM|FM2: middle). A Schottky barrier (SB) of height ΦS is formed at each
SC|FM interface of this three terminal device. The injection and collection of hot
electrons is done across the two SBs.

would require a room temperature (RT) magnetic semiconductor but the Curie tem-
peratures of magnetic semiconductors are at present too low [3]. GMR and TMR
devices work at RT because they are based upon transition metal itinerant ferroma-
gnets with Curie temperatures far larger than this, leading to the study of hybrid
transition-metal|semiconductor devices. Whereas spin-dependent transport [4] in me-
tallic devices is mostly studied in the linear response regime, in hybrid devices such
as the spin-valve transistor (SVT) [5–7], the electrons responsible for transport are
hot electrons, substantially above the Fermi energy. The number of experiments on
hot electron transport is relatively small and correspondingly few theoretical studies
have been carried out [8–11].

A three-terminal device with semiconducting (SC) emitter and collector and a
layered metallic magnetic base [12], the SVT is essentially a metal-base transistor
[13] with a spin valve forming the metal base; see Fig. 5.1. When a forward bias is
applied between the base and the emitter, a current Ie is injected over the Schottky
barrier (SB) and enters the base at energies many kT above the Fermi energy. As these
hot electrons enter the base and travel through it, they undergo various “volume”and
“interface”, elastic and inelastic scattering processes which change their energies as
well as their momenta. They then reach the collector side of the SVT where they
encounter a second SB. Electrons are only able to enter the collector and contribute
to the collector current Ic if (i) they have retained sufficient energy to overcome
the second SB at the collector side and (ii) they propagate in states with transverse
crystal momentum k‖ which matches that of states in the semiconductor collector,
k′‖. All other electrons that, as a result of scattering in the base layers, have either lost
too much energy or arrive with the wrong momentum will thermalize and contribute
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Figure 5.2: Scheme of the lattice matched GaAs|Fe|Cr|Fe|GaAs SVT studied in
the present work in the flat band regime.

to the base current.
In transition-metal ferromagnets, spin-dependent scattering gives rise to a spin-

dependent “volume” attenuation which is the main physical principle underlying the
operation of the SVT [14]. Spin-up and spin-down electrons are scattered differently
as they traverse the base and their scattering depends on the relative orientation of
the magnetizations in the ferromagnetic layers which can be parallel or antiparallel
(achieved experimentally by application of an external magnetic field). Because the
scattering in the base is strongly spin-dependent, SVTs exhibit very large magne-
tocurrents (MC). Defined as the ratio of the collector currents in the parallel (P)
and antiparallel (AP) magnetic configurations of the base, MC= IP

c /I
AP
c − 1 can be

as high as 400% at room temperature [15, 16]. At the same time the volume atte-
nuation is responsible for one of the main drawbacks of the SVT: an unacceptably
small “transfer ratio” α. Defined as the ratio of the collector to the emitter current,
α = Ic/Ie is only of the order of 10−6 which seriously limits the applicability of the
device [12].

There have been quite a number of experimental [17–23] and theoretical [24–30]
studies of the elastic and inelastic scattering undergone by hot electrons in transition
metals: the origin of the volume attenuation. Relatively little attention has been paid
to interface effects [8] - which is somewhat surprising since spin-dependent interface
scattering at the Fermi energy is what is mainly responsible for GMR and TMR.
This spin-dependent interface scattering ultimately derives from the spin-dependent
mismatch of transition metal electronic structures [31–35] which single-band, free-
electron or tight-binding models do not describe satisfactorily. In the theoretical
studies by Yamauchi and Mizushima [10] and Vlutters et al. [8] the electronic struc-
tures were described using such single-band models. To model results measured for
a Si|Pt|Ni80Fe20|Au|Co|Au|Si SVT, a spin-dependent interface scattering was intro-
duced in terms of a single parameter in Ref. [14]. In the present work we explore
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Figure 5.3: Schematic representation of the momentum bottle neck in the SVT.
The surfaces of constant energies (SCE) are calculated for the materials GaAs, Fe
and Cr at an energy E = EF + 0.790 eV, just above the bottom of the conduction
band minimum of GaAs in the flat band limit. For simplicity, only one SCE sheet
is shown for the majority channel in a parallel configuration. The arrows indicate
the additional channels which are opened for transport through the metallic base in
the presence of disorder when transverse momentum is not conserved.

the energy- and spin-dependence of the transmission of electrons through a model
GaAs|Fe|Cr|Fe|GaAs SVT structure in the flat-band limit [13]; see Fig. 5.2. We focus
our attention on the influence of realistic band structures on the elastic scattering of
electrons and, in particular, examine the effect of interface disorder on the so-called
“momentum bottleneck” illustrated in Fig. 5.3.

For n-type GaAs, the states available to mobile charge carriers are the free-
electron like conduction band states. For energies just above the bottom of its conduc-
tion band, the surfaces of constant energy (SCE) in momentum space are small
spheres (Fig. 5.3, left-hand side) centred on the origin of the Brillouin zone Γ, with
small values of the crystal momentum k. In the metallic base, there are a number of
s, d states present at the same energy, with crystal momenta throughout the Brillouin
zone (BZ); the SCEs are much larger (Fig. 5.3, middle three panels) and very much
more complex, which is typical of transition metal partially-filled d-bands. If the se-
miconductor emitter and metallic base are lattice matched and there is no disorder,
then the resulting translational periodicity parallel to the interface requires that the
transverse component of the crystal momentum k‖ be conserved. This means that
a much more limited set of states - those with matching transverse momentum - is
available to the electrons coming from the emitter. The same condition holds at each
interface in the base until the electron comes to the collector where it must again have
the correct - small - transverse momentum to enter the collector (Fig. 5.3, right-hand
side). In an ideal crystalline SVT in the absence of disorder, electrons injected from
the emitter pass through the device into the collector without being scattered; their
transverse momentum is conserved at each interface, k‖ = k′‖.

In the presence of disorder, or when the SVT is made of materials with incommen-
surate lattice parameters, translational symmetry parallel to the interface is broken
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and the transverse momentum need no longer be conserved. This opens up more
channels for conduction in the metallic base. Nevertheless, only states with small
transverse momenta can enter the collector because for energies just above the bot-
tom of the SC conduction band, only such states exist: this is the momentum bot-
tleneck. It is not a priori clear whether breaking of translational symmetry is more
or less favourable for the operation of SVTs and difficult to derive insights from
oversimplified models of the metallic band structures.

The object of this paper is to construct a “semirealistic” model SVT and use it to
investigate the type of band structure effects which might be found with transition
metals. We have chosen the GaAs|Fe|Cr|Fe|GaAs system for our study because the
lattice constants of cubic Fe, Cr and GaAs are the same to better than 2%: epitaxial
Fe|Cr multilayers are prepared routinely, Fe can be grown epitaxially on GaAs, so
such a SVT structure could in principle be made. It is also essential to have lattice
matching to perform detailed electronic structure calculations using existing methods
[35].

The calculation of the transmission through the SVT device is done in a two-
step procedure. In the first step (Sec. 5.2), the electronic structure and magnetic
properties (potentials and spin densities) are determined self-consistently for the
electronic ground state using a tight-binding [36–38] linearized muffin-tin orbital [39]
(TB–LMTO) surface Green’s function (SGF) method [40]. Substitutional disorder is
handled using the coherent potential approximation (CPA) [41], also self-consistently.
In the second step (Sec. 5.3), the potentials are used as inputs to calculate energy
dependent transmission matrices using a TB–MTO wave-function matching scheme
(WFM) and modelling substitutional disorder at the interfaces by means of large
lateral supercells [34, 35]. The results are discussed and some conclusions drawn in
Sec. 5.4. Some technical aspects of calculating the band structure of zinc-blende GaAs
using the LMTO-ASA method are given in Appendix B.1.

5.2 Ground State Calculations

After a brief description of the SVT structure, a number of technical details of
the method used for the self-consistent electronic structure calculations are given in
Sec. 5.2.1. The calculated electronic and magnetic properties of the SVT are described
and discussed in Sec. 5.2.2.

For the reasons outlined in the Introduction, the SVT structure we have chosen
to investigate is an ideal, lattice-matched AsGa|Fe|Cr|Fe|GaAs (001) heterostructure
with Ga terminated interfaces [42–44]; see Fig. 5.2. The lattice constant of GaAs,
aGaAs = 5.654 Å, is almost twice that of bcc Fe, aFe = 2.871 Å. We assume that bcc
Fe grows epitaxially on top of zinc-blende (zb) GaAs adopting its lattice parameter
and we neglect the small lattice mismatch of 1.6 %. The separation between the
Fe and GaAs planes forming the interface is determined by conserving the volume
of the individual atoms. For the metallic base, unless stated otherwise, the follo-
wing thicknesses in monolayers (ML) of Fe and Cr was used: GaAs|Fe(10 ML)|Cr(10
ML)|Fe(11 ML)|GaAs (001); one 11 ML thick layer was used to facilitate having a
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Figure 5.4: Illustration of the relationship between the GaAs fcc and Fe bcc lattices
with lattice constants aGaAs and aFe respectively. (AFe, BFe) and (AGaAs,BGaAs) des-
cribe the 2D translation symmetry of ideal Fe and GaAs (001) surfaces, respectively.
The Ga atoms in the top layer of GaAs are shown as small blue circles, the first
layer of Fe atoms as larger filled red circles. The interface unit cell shown shaded
contains one Ga atom and two inequivalent Fe atoms.

Ga termination on each side of the device.

5.2.1 Method

The starting point for the transmission calculations is a potential profile for the
SVT which is calculated self-consistently within the framework of the local spin den-
sity approximation (LSDA) of density functional theory (DFT) valid for describing
ground state properties such as charge and spin distributions. Throughout this study
the exchange and correlation potentials we use are those calculated by Ceperley and
Alder (CA) [45] and parametrized by Perdew and Zunger (PZ) [46].

To solve the Kohn-Sham (KS) equations of DFT, the wave functions are expanded
in a minimal basis set (spd) of TB–LMTOs: tight-binding [36–38] linearized muffin-
tin orbitals [39]. Since the atomic spheres approximation (ASA) [39] used for the
potential works very well for close-packed solids, we adopt the usual procedure [47]
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of introducing additional “empty spheres” at the tetrahedral interstitial positions in
the zb structure, i.e. atomic spheres without nuclear charge, effectively converting
the open diamond structure into a close-packed one where every sphere has eightfold
coordination. Besides Ga and As atoms at (0, 0, 0) and ( 1

4 ,
1
4 ,

1
4 ), the unit cell of

GaAs then contains two types of empty spheres, E1 and E2 at ( 1
2 ,

1
2 ,

1
2 ) and ( 3

4 ,
3
4 ,

3
4 )

positions, respectively, all in units of aGaAs = 5.654 Å. In our calculations we use the
lattice constant of bulk GaAs corresponding to a Wigner-Seitz atomic sphere radius
for Fe of 2.6304 a.u. For simplicity, equal sphere sizes are used for Ga, As, E1 and
E2; more details are given in Appendix B.1.

The SVT structure sketched in Fig. 5.2 does not have translational periodicity
in the transport direction. To calculate its electronic structure and magnetic proper-
ties (potentials and spin densities) self-consistently, the (scalar-relativistic) surface
Green’s function technique (SGF) [40] was used. The in-principle infinite Hamilto-
nian describing the open system can be reduced to finite size if the Hamiltonian can
be expressed in real space in block tridiagonal form. In that case the semiinfinite
leads can be transformed away to appear as energy-dependent embedding potentials
or self-energies sited on the boundary layers. The size of the blocks which are called
“principal layers” (PL) is determined by the range of the physical interaction and by
the range of the basis functions used to express the Hamiltonian in matrix form. By
using TB–LMTOs the size of the principal layers is minimized. Their range is such
that for a (001) orientation interface, the PL is two MLs thick. In the semiconductor,
one of these layers contains Ga atoms (and an empty sphere) while the other layer
contains As atoms (and an empty sphere). The translational periodicity parallel to
the interface is such that the 2D interface unit cell contains four atoms: Ga, E1, As
and E2; see Fig. 5.4. On the metal side, each ML contains two inequivalent Fe (or
Cr) atoms (which we label a and b). In the following, we used an angular momentum
cutoff of `max = 2 (spd basis) combined with the ASA. Disorder was modelled using
a version of the coherent potential approximation [41] (CPA) suitable for layered
structures [40].

5.2.2 Electronic Structure

We begin with a brief description of those aspects of the electronic structure which
will be needed to understand the energy dependent transmission in Sec. 5.3.

Bulk band structures of GaAs, Fe and Cr

DFT is designed to describe ground state properties such as charge and spin den-
sities and does so remarkably well. The Kohn-Sham eigenvalues are also known to
give a good description of the experimental single particle eigenvalue spectrum in
most respects. One well-documented deficiency is the failure to reproduce the single
particle gap of even weakly correlated semiconductors and insulators that is systema-
tically and seriously underestimated by the LDA [48]. The experimental band gap of
zb GaAs is 1.52 eV [13] while that obtained using the LDA, and the TB–LMTO–ASA
method as implemented in Ref. [40] is only 0.59 eV. We corrected the band gap of
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GaAs using a self-consistent “scissor-operator”-type correction term as follows. For
bulk GaAs, an attractive constant term was added to the potential inside the As
atomic sphere and the KS equations iterated to self-consistency. This procedure was
carried out for different values of the constant until a value was found which reprodu-
ced the experimental band gap. The resulting band structure is plotted in Fig. 5.5c
in the kz direction for the point k‖ = 0, i.e., the Γ−X direction for bulk GaAs or
the point Γ̄ in the two-dimensional BZ (2DBZ). In the (001) direction, the lowest
conduction band of GaAs with ∆zb

1 symmetry transforms according to the fully sym-
metric irreducible representation of the symmetry group of the zb structure in this
direction, C2v.

The in-plane periodicity and thus the common two-dimensional unit cell and
Brillouin zone are determined by the semiconductor since one zb GaAs lattice constant
is set to match two of bcc Fe (Fig. 5.4). For ferromagnetic bcc Fe, the bulk band struc-
ture in the kz direction for k‖ = 0 is shown in Fig. 5.5(a) for the majority spin and in
Fig. 5.5(b) for the minority spin channel. For non-magnetic bcc Cr, the corresponding
bands are shown in Fig. 5.5(d). The relationship between the GaAs zb and Fe or Cr
bcc lattice constants is such that at k‖ = 0 we find not only Fe and Cr bands from
the bulk Γ−H direction (full lines) but, in addition, bands downfolded from the bulk
N−P−N direction (dashed lines). In this way the number of Fe and Cr bands at Γ̄ is
doubled. Though the GaAs|Fe (001) interface has the C2v reduced point group sym-
metry (which is also the symmetry of the complete SVT), to avoid confusion with the
literature the Fe and Cr bands in Fig. 5.5 are labelled according to the space group
symmetry of the bulk lattice: ∆1,2,2′,5 irreducible representations along the Γ−H di-
rection and D1,2,3,4 irreducible representation along the N−P−N (D) direction. The
GaAs bands in Fig. 5.5c are aligned (see below) with the joint Fe|Cr|Fe Fermi energy
so that the Fe|GaAs SB height is in agreement with experiment.

Interfaces

In principle we could simply perform a self-consistent calculation for the full
GaAs|Fe|Cr|Fe|GaAs SVT to determine its potential and spin profile. In practice, it
turns out to be more efficient for such a large system to make use of the near perfect
screening of 10 MLs of metal to factor self-consistency for the full SVT into that of
GaAs|Fe and Fe|Cr|Fe subsystems which are first solved separately. For sufficiently
thick Fe, the spin-densities in Fe far from the interfaces will be identical and equal to
the bulk spin-density. The separate atomic sphere spin and charge densities can then
be patched together to construct a starting spin-density for the full system which
converges rapidly. Using 10-11 ML thick metallic layers, this procedure will be useful
if the spin and charge density in the fifth and sixth layers of Fe do not differ much
in the subsystem calculations.
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Figure 5.5: Energy band structures along (001) at Γ̄ point of (a) Fe majority spin
states, (b) minority spin states, (c) GaAs and (d) Cr. The Fermi energy is shown
by a horizontal dashed line. The numbers denote the symmetries of the bands along
the ∆ direction (Γ−H) (solid lines) and the D direction (N−P−N) (dashed lines)
[49] (a,b,d) for a bcc crystal structure. In (c) the bands are plotted along the ∆
direction (Γ−X) for the zb structure.

We begin by determining self-consistently the potential profile of the Fe|GaAs
interface using a Ga-terminated AsGa|Fe (001) interface [42]. The region where it
differs from the bulk values is determined empirically by systematically increasing
the number of layers of “interface” Fe and GaAs whose spin and charge densities
are iterated to self-consistency sandwiched between “bulk” Fe and GaAs. These are
allowed to vary in nGa and nAs layers of (Ga+E1) and (As+E2), and nFe layers of Fe
bounding the interface. In practice, values of nGa + nAs = 6, 8, 10, 16, 20, 30 MLs of
GaAs in contact with Fe and nFe = 8 MLs of Fe in contact with GaAs were tested.
The magnetic profile of Fe|GaAs is given in Table 5.1. Five MLs from the interface
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Fe|GaAs Fe|Cr
P AP

Layer clean Layer clean dirty clean dirty
mFe(bulk) 2.155 mFe(bulk) 2.155 2.155 2.155 2.155
mFe(int-6b) 2.148
mFe(int-6a) 2.136 mFe(int-10) 2.155 2.153 2.154 2.153
mFe(int-5b) 2.146 mFe(int-9) 2.148 2.151 2.148 2.151
mFe(int-5a) 2.185 mFe(int-8) 2.152 2.150 2.152 2.148
mFe(int-4b) 2.136 mFe(int-7) 2.149 2.158 2.146 2.160
mFe(int-4a) 2.115 mFe(int-6) 2.165 2.149 2.170 2.147
mFe(int-3b) 2.193 mFe(int-5) 2.143 2.175 2.139 2.177
mFe(int-3a) 2.182 mFe(int-4) 2.196 2.187 2.196 2.189
mFe(int-2b) 2.232 mFe(int-3) 2.206 2.281 2.206 2.280
mFe(int-2a) 2.203 mFe(int-2) 2.315 2.034 2.319 2.038
mFe(int-1b) 1.657 mFe(int-1) 1.819 2.139 1.849 2.134
mFe(int-1a) 1.976 mCr(int-1) – 0.337 – 0.361
mGa(int+1) – 0.016 mFe(int+1) 1.752 1.773
mAs(int+2) 0.042 mCr(int+1) – 0.139 0.009 – 0.189 0.042
mGa(int+3) 0.006 mCr(int+2) 0.059 0.044 0.130 – 0.002
mAs(int+4) 0.004 mCr(int+3) – 0.056 – 0.006 – 0.138 0.048
mGa(int+5) 0.001 mCr(int+4) 0.032 0.004 0.150 – 0.062
mAs(int+6) 0.001 mCr(int+5) – 0.023 0.000 – 0.149 0.069
mGa(int+7) 0.000 mCr(bulk) 0.000 0.000 0.000 0.000
mAs(int+8) 0.000
mGa(bulk) 0.000
mAs(bulk) 0.000

Table 5.1: Layer resolved magnetic moments (in Bohr magnetons) for an Fe|GaAs
interface and an Fe|Cr|Fe (001) trilayer. The 2DBZ integration was carried out with
48×48 = 2304 and 60×60 = 3600 k‖-mesh points in the full 2DBZ corresponding to
the 1×1 interface unit cells for Fe|GaAs and Fe|Cr|Fe (001), respectively. The ma-
gnetic moments contained in the empty spheres are not reported in this table, their
values at the interface are less than 0.009 µB and decrease to zero well before the
last GaAs layer considered. Each layer in the Fe half-space in Fe|GaAs (001) slab
contains 2 inequivalent atoms (a,b). Only the moments of half the slab of Fe|Cr|Fe
(001) are shown here. The other half can be obtained from the symmetry (antisym-
metry) of the P (AP) configuration. The “dirty” interfaces Fe|Cr are modelled by
two MLs of 50%-50% alloy.

the average magnetic moment per Fe is (2.146+2.185)/2 = 2.166µB and 6 MLs away
it is (2.148 + 2.136)/2 = 2.142µB compared to a calculated bulk value of 2.155µB ;
the average moment over layers 5 and 6 is equal to the bulk value but there is still an
oscillation of amplitude 0.01µB . At the interfaces with GaAs, Fe displays a reduced
average magnetic moment of (1.657 + 1.976)/2 = 1.817µB/atom. On the GaAs side,
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only very small moments of −0.016µB and 0.042µB are induced on the closest Ga
and As atoms, respectively and the spin-density decays to a negligible values 6 MLs
from the interface. The potential 16 MLs from the interface yields a band structure
indistinguishable from the bulk band structure (Fig. 5.5c). In the rest of our study
16 MLs of GaAs in the (001) direction will be treated as “interface” layers in which
the potential is allowed to deviate from that of bulk GaAs and is calculated self
consistently.

In order to reproduce the experimentally known SB height, ΦS = 0.7 eV [50, 51], a
procedure analogous to that used to obtain the experimental band gap for bulk GaAs
was used: a constant term was added to the potentials inside the Ga, As, E1 and E2

atomic spheres and the potential profile iterated to self-consistency. The SB height
for this potential profile was then determined and the whole procedure repeated with
a different constant term until a value was found which yielded the desired value of
ΦS = 0.7 eV.

The next step is to calculate the electronic and magnetic properties of a
Fe(10ML)|Cr(10ML)|Fe(11ML) (001) trilayer sandwiched by bulk Fe for P and AP
configurations of the bulk Fe layers. The magnetization profiles are symmetric (P)
or antisymmetric (AP) with respect to inversion about the inversion centre in the
middle of the Cr layer so only the independent half of the layer-resolved magnetic
moments are given in Table 5.1. The magnetic moment of bulk Fe with our choice
of lattice constant, exchange-correlation potential etc. is 2.155µB . This value is only
attained ∼ 10 MLs away from the Fe|Cr interface but the average moments from
layers 5 and 6 are (2.143 + 2.165)/2 = 2.154µB and (2.139 + 2.170)/2 = 2.155µB

for the P and AP configurations, respectively i.e. this far from the interface the Fe
moment is oscillating by only ±0.01µB . At the Fe|Cr interface the Fe moment is
reduced to 1.819 (P) and 1.849 (AP). A moment is induced in Cr antiparallel to the
Fe moment. Bulk bcc Cr in the LSDA orders antiferromagnetically (AF) but the size
of the moment depends very sensitively on the details of the calculation: the volume
chosen, exchange-correlation potential etc. We see this AF ordering in the change of
sign of the Cr moment from layer to layer. For the P configuration and 10 MLs of Cr,
this oscillation is incompatible with the magnetism of the bounding Fe layers and the
Cr magnetic moment decays quite fast. For the AP configuration no such frustration
occurs and the Cr moment does not decay but its value is still quite small, of order
0.15µB

The results reported above were for ideal ordered interfaces. We model disorder
(restricted to the Fe|Cr interface) by considering two “dirty” MLs of alloy where
the concentration of each species is 50%. The magnetic moments at the interfaces are
slightly modified for both Fe and Cr (“dirty”column in Table 5.1). For the alloy ML in
direct contact with Fe, the Fe and Cr atoms have magnetic moments of 2.139 (2.134)
µB/atom and −0.337 (−0.361) µB/atom, respectively for P (AP) configurations.
For the alloy ML in direct contact with Cr the corresponding moments are 1.752
(1.773) µB/atom for Fe and 0.009 (0.042) µB/atom for Cr in P(AP) configuration,
respectively. The alloy Fe moments are aligned with the moments in the Fe layer while
the Cr moments are antialigned. The resulting “frustration” leads to a quenching of
the moments in the Cr in both cases.
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Figure 5.6: Projections of surfaces of constant energy E = EF + 0.790 eV onto
a plane perpendicular to the transport direction for Cr (a), Fe minority (b) and Fe
majority (c). Transmission probabilities T σ(E = EF + 0.790,k‖) through the Cr|Fe
(001) interface are shown in figures (d) and (e) for minority and majority electrons,
respectively. These calculations were carried out for a 1× 1 interface unit cell. The
corresponding “simplified” bulk band structures of Cr (a′), Fe minority (b′) and Fe
majority (c′), respectively, plotted along the ∆ direction (Γ −H) are shown in the
bottom left-hand panel where the dashed horizontal line denotes the Fermi energy
and the full horizontal line the energy E = EF + 0.790 eV.

Finally, the AS potentials, charge and spin densities calculated above are used
as inputs to a calculation for the full GaAs|Fe(10 ML)|Cr(10 ML)|Fe(11 ML)|GaAs
structure which converges rapidly and yields a magnetization profile which does not
differ appreciably from that just described. The second step of our two step proce-
dure is to use these potentials as inputs to calculate energy dependent transmission
matrices. The results of these calculations are presented in the next section.

5.3 Transmission Calculations

The transport of hot electrons in the SVT is formulated quantum mechanically as
a scattering problem. We calculate the normalized transmission probability through
the device at a fixed energy E

T̃ σ(E) =
1

T σ
Sh(E)

∑
µ,ν,k‖

|tσµν(E,k‖)|2 (5.1)

where σ is the spin index, σ =↑, ↓ (or maj, min). t(E,k‖) is a matrix of transmission
coefficients calculated at energy E using a wave-function matching[52, 53] scheme[34,
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35] based on the TB-MTO method and ν and µ denote incoming and transmitted
Bloch waves, respectively. Close to the bottom of the conduction band, the surfaces
of constant energy are very small on a scale of π/a and only a very small number of
states in the semiconductor emitter and collector contribute to the transmission. To
factor out this effect as we increase the energy, the total transmission is renormalized
with the number of conduction channels available in the semiconductor at energy E.
This is just the Sharvin transmission T σ

Sh(E) of the semi-infinite leads with T ↑
Sh(E) =

T ↓
Sh(E).

Before discussing the transport in the SVT it is useful to examine the most im-
portant features of the ideal Cr|Fe (001) interface transmission when there is only one
metal atom per ML, without the downfolding of the bands seen in Figs. 5.5(a,b,d).
Two-dimensional projections of the surfaces of constant energy are shown for a non-
magnetic Cr lead in Fig. 5.6(a), and for the minority and majority spins of a ferro-
magnetic Fe lead at E − EF = 0.790 eV in Figs. 5.6(b) and (c), respectively. This
energy is just above the bottom of the GaAs conduction band in the flat band limit;
it is indicated by the full horizontal line in the bottom left-hand panel of Fig. 5.6
where the bands for the 1× 1 interface unit cell are shown. The dispersion of the Fe
majority-spin band at this energy is very free-electron-like, Fig. 5.6(c′), leading to a
simple SCE, shown in Fig. 5.3, with a single conduction channel for all k‖ except at
the zone boundaries where there are two. Fig. 5.6(b′) shows that this energy inter-
sects a number of Fe minority-spin sd bands, leading to a very complicated SCE; from
Fig. 5.6(b) as many as 5 propagating states are seen to occur for a given k‖. The same
is true of Cr whose SCE is shown explicitly in Fig. 5.3; its projection in Fig. 5.6(a)
exhibits as many as 6 propagating states. For an ideal Cr|Fe interface the transverse
momentum is conserved and the transmission probability T σ(E,k‖) at this energy is
shown in Figs. 5.6(d) and (e) for minority and majority spins respectively. For some
k‖ with NCr propagating states on one side and NFe on the other, the maximum
transmission is min(NCr, NFe). The maximum transmission in Figs. 5.6(d) is found
by inspection to be about 3.8 over a large region around Γ̄, the centre of the 2DBZ
and very close to the maximum possible with 4 propagating states on either side of
the interface. Summation over all k‖ in the 2DBZ results in an integrated value of 1.2.
In the majority spin case, the states on either side of the interface have very different
orbital character and the transmission is overall quite low. In particular, it essentially
vanishes in the region about Γ̄. Only in the very corners of the 2DBZ where there
are 2 Cr propagating states does the maximum transmission reach a value of ∼ 1.7.
The integrated value is only 0.3, a factor of four lower than that for the minority spin
channel.

The very different behaviour close to Γ̄ for the majority and minority spin chan-
nels will be of particular importance for understanding the transmission through the
complete SVT because the propagating states in GaAs are to be found in this region
of momentum space. For energies just above the bottom of the conduction band, the
surfaces of constant energy in GaAs are essentially spheres centred on Γ whose pro-
jections are circles with area proportional to 2m∗

c(E−Ec)/~2. Here Ec is the bottom
of the conduction band with ∆zb

1 symmetry and m∗
c its effective mass.

The summation over k‖ in Eq.(5.1) requires some care. For energies very close
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to the bottom of the conduction band at E − EF = 0.7, we need a dense mesh of
sampling points about Γ̄. As we go higher in energy a bigger region of momentum
space must be sampled, but a less dense mesh is required. In the calculations to be
discussed below, we used an energy step of 0.045 eV and sampling densities ranging
from the equivalent of 2048 × 2048 in the full 2DBZ of a (1×1) interface unit cell
for low energies decreasing to 512× 512 for higher energies. This is sufficient to yield
integrated tranmission probabilities which are converged to better than 2%

The TB-MTO basis allows us to model disorder[34, 35, 54] without compromising
the description of the transition metal band structure. To model interface disorder
at the Fe|Cr interfaces, 4×4 lateral supercells containing 16 Ga (or As) atoms and
16 empty spheres in each layer of GaAs and 32 atoms in each layer of Fe or Cr
in the metal base were used. This corresponds to a scattering region containing
approximately 1500 atoms.

5.3.1 Defect-free Interfaces

We begin our study of the transmission through the complete SVT structure by
considering ideal, defect-free interfaces for which k‖ is conserved. T σ(E) is shown in
Fig. 5.7 for P and AP aligned Fe layers. For the parallel configuration, the transmis-
sion exhibits a large spin asymmetry, especially at lower energies where the minority
channel is dominant; in the range E−EF = 0.7−1.0 eV, Tmin is about 2 to 4 orders
of magnitude larger than Tmaj . This is curious because it is exactly the opposite of
what is observed in spin-injection studies through Fe|GaAs [43, 44] or Fe|InAs [54]
interfaces where the majority channel is dominant. In the energy range up to 1 eV,
we find a transmission polarization, defined as (Tmaj −Tmin)/(Tmaj +Tmin), which
is negative and as high as -99 % ; see Table 5.2. With increasing energy, this value
starts decreasing slowly and changes sign at about 1.15 eV. We will see below that
the increase in Tmaj is due to the occurrence, at about 0.92 eV above EF , of Cr
bands with the same ∆1 symmetry as the majority spin Fe electrons. The trends
seen in Fig. 5.7(a), the large spin asymmetry, its sign and decrease with increasing
energy can all be qualitatively understood in terms of the symmetry of the bulk band
structures of GaAs, Fe and Cr shown in Fig. 5.5.

For the energy E = EF +0.790 eV, slightly above the bottom of the GaAs conduc-
tion band, the transmission probabilities for majority and minority spin channels in
the P configuration are plotted as a function of k‖ in Fig. 5.8. For the majority spin
channel, the transmission is seen to be a smooth function of k‖ but is very small
with a maximum value less than 10−5. This value is about 5 orders of magnitude
smaller than the maximum value found for the minority spin transmission which by
contrast, has a singular, spiky behaviour as a function of k‖. A very fine mesh of
sampling points is required to converge the 2DBZ summation to determine the total
transmission (Fig. 5.9).

For energies close to the bottom of the GaAs conduction band, transmission is
restricted to a very small number of channels close to Γ̄. Precisely at Γ̄, the eigenstates
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Figure 5.7: Transmissions of (a) P and (b) AP configuration in the SVT as a
function of the energy above EF +ΦS for majority (◦) and minority (H) spins. ΦS,
equal to 0.7 eV [50, 51], is the height of the Schottky barrier. The values reported
here are normalized to the so-called Sharvin transmissions of GaAs.

of the SVT transform according to the irreducible representations of the point group
of Γ̄, which is C2v and can be formed from states with the corresponding symmetries
in the individual materials whereby it should be noted that the symmetry labels at Γ̄
for Fe and Cr refer to the C4v point group but in GaAs to the C2v point group. The
states at Γ̄ in GaAs transform according to the ∆zb

1 irreducible representation of the
C2v point group. At the interface with Fe, they can match [43, 44, 54] to states in Fe
which transform according to the ∆1 and ∆′

2 irreducible representations of the C4v

point group. Therefore we begin with an analysis of what happens at the Γ̄ point.

For the Fe majority spin channel, there are states with ∆1 and D3 symmetry
at Γ̄ (Fig. 5.5) but only the former couple to the ∆zb

1 states. Tmaj
GaAs,Fe (the spin-

dependent transmission probability from GaAs in to Fe) decreases slowly from a
large value of ∼ 0.5 at Γ̄. In Cr, there are no states with ∆1 symmetry at this
energy and the transmission from the left Fe slab to the right Fe slab through Cr
might be expected to vanish at Γ̄. However, this reasoning only considers coupling
to propagating states in Cr which is only strictly correct for infinitely thick Cr.
For a finite layer of Cr, evanescent states with the appropriate symmetry make a
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Energy (eV) α∗ MT (%) Pol(%)
0.745 5.45× 10−3 1800 – 99
0.790 2.65× 10−3 1800 – 99
0.835 11.30× 10−3 56000 – 99
0.880 0.35× 10−3 300 – 99
0.925 6.20× 10−3 2 – 99
0.970 2.10× 10−3 30 – 90
1.015 38.35× 10−2 100 – 98

Table 5.2: Energy dependence of the “transfer factor”, α∗(E) = T maj
P (E) +

T min
P (E) ≡ TP (E), the “magnetotransmission” MT(E) = TP (E)/TAP (E) − 1 and

the polarization (for the P configuration) in the energy range 0.745− 1.015 eV for
clean interfaces.

tiny but non-zero contribution to the transmission so that at Γ̄, Tmaj
Fe,Fe ∼ 10−7. The

evaluation of the product (T σ
GaAs,GaAs ≈ T σ

GaAs,FeT
σ
Fe,FeT

σ
Fe,GaAs) yields Tmaj

GaAs,GaAs ∼
0.25 × 10−7 (the spin-dependent transmission probability from Fe through Cr into
Fe). This underestimates quite considerably the “exact” value found in Fig. 5.8 of
10−6.

What we have neglected is the possibility of multiple reflections at the partially
reflecting, transverse-momentum conserving interfaces. We can make a simple esti-
mate of the maximum size of the enhancement possible if we assume that all the
phase factors conspire to give constructive interference [44]. If we do this, we find
that

tGaAs,GaAs ≈
tGaAs,Fe tFe,Fe tFe,GaAs

(1− |rGaAs,Fe||rFe,Fe|)(1− |rFe,Fe||rFe,GaAs)
(5.2)

(up to a phase factor). Evaluating this expression with the same transmission proba-
bilities used above leads to Tmaj

GaAs,GaAs ∼ 3×10−6, confirming that multiple reflections
can indeed not be neglected.

In the minority spin channel case, states in the energy region of interest with dxy

orbital character which transform according to the ∆2′ irreducible representation
on Fe atoms, can couple to the ∆zb

1 states. The x and y directions are indicated
in Fig. 5.4. Because these orbitals are in-plane, their coupling to the GaAs states
is expected to be much weaker compared with that of the Fe ∆1 majority spin
states and indeed, at Γ̄ and at E = EF + 0.790 eV, Tmin

GaAs,Fe ∼ 10−2. The Fe ∆2

states with dx2−y2 character, ∆5 states with px, py, dxz or dyz character, and the
downfolded D1,2,3 states can also not couple to ∆zb

1 so their contribution to the
transmission through the single GaAs|Fe interface is zero. At the Fe|Cr interface,
these ∆2′ minority states are perfectly transmitted, Tmin

Fe,Fe ∼ 1. This is not surprising
since the minority spin band structure of Fe matches that of Cr very well. Evaluating
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Figure 5.8: Transmission probabilities through the SVT as a function of k‖ for
Ga-termination and sharp metallic Fe|Cr interfaces. The upper plot is for majority
(a,b) and the lower is for minority (c,d) spin channels. Figures (b,d) are the two-
dimensional projections of the top view of figures (a,c). These figures are plotted
at an energy of 0.790 eV above EF , corresponding to the second energy point in
Fig. 5.7, and only the central 1.5% of the 2DBZ area is shown here (the values on
the horizontal axes are given in the units of 2

√
2π/aGaAs). Different vertical scales

are used for majority and minority spins.

the product (T σ
GaAs,GaAs ≈ T σ

GaAs,FeT
σ
Fe,FeT

σ
Fe,GaAs) again, the total transmission for

this channel is 10−4 which is 2 orders of magnitude higher than that of the majority
spin and in agreement with the results of the full calculation. Because the reflection
at the Fe|Cr interface, rFe,Fe is virtually zero, the correction for multiple reflection
using Eq. (5.2) also vanishes.

The symmetry arguments just used are only valid at the Γ̄ point so the analysis
we have just carried out only helps to understand (i) the spin dependence of the
transmission at energies sufficiently low that Γ̄ is representative and (ii) the curious
dominance of the minority spin transmission observed at the beginning of this sec-
tion: the previously observed dominance of the majority spin transmission through
Fe|GaAs [43, 44] or Fe|InAs [54] interfaces is reversed by the opaqueness of the Fe|Cr
interface when transport is restricted to a small area around Γ̄. At energies as low
as E = EF + 0.790, just 0.09 eV above the bottom of the conduction band, large
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Figure 5.9: Summation of the transmission probabilites shown in Fig. 5.8 over k‖
to obtain T σ(E = EF + 0.790) normalized according to Eq. (5.1) for a SVT in the
P configuration. For majority and minority spins, T is plotted as a function of the
normalized area element used in the 2D Brillouin zone summation, ∆2k‖/ABZ =
1/Q2. Q, the number of intervals along the reciprocal lattice vector is indicated at
the top of the figure.

deviations from the behaviour at Γ̄ are seen in Fig. 5.8.
At higher energies, the most important effect comes when a band with ∆1 sym-

metry is encountered at 0.92 eV in Cr. This leads directly to a striking increase in
Tmaj

Fe,Fe(E) at this energy since there is a state with this symmetry over the full energy
range of interest in the Fe majority spin bands. In the Fe minority spin band struc-
ture, the ∆1 band starts at about 1.1 eV but at this energy a large part of the 2DBZ
is involved, so the transmission is already quite high and symmetry filtering no longer
plays an important role.

For AP orientation of the Fe layers we find transmissions which lie between the
minority and majority values calculated for the P configuration, see Fig. 5.7. This is
quite reasonable. What we did not expect is a large asymmetry between the spin-
up and spin-down transmissions. Nevertheless, in Fig. 5.7(b) we see very substantial
differences between the two spin channels, as large as two orders of magnitude at
0.925 eV. The origin of these differences can be traced to the fact that one Fe layer is
10MLs, the other 11 MLs thick, and to the importance of multiple reflections which
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leads to a large sensitivity of the transmission on layer thickness. This sensitivity
threatens to make our whole undertaking of dubious value. We will see in the next
section, however, that it disappears as soon as a modest amount of interface disorder
is introduced and we will dispense with any more detailed analysis of the specular
AP case.

For specular interfaces, the energy dependent “magnetotransmission”,
TP (E)/TAP (E)− 1, which will ultimately enter into the calculation of the magne-
tocurrent [12] exhibits values of the order of 103 for small energies; see Table 5.2.
The “transfer factor” α∗(E), defined as the sum of the majority and minority spin
transmission for a parallel configuration, which will enter into the calculation of the
transfer ratio is of the order of 10−3.

5.3.2 Disordered interfaces

The results obtained in the previous section for specular interfaces in the ballis-
tic regime were dominated by matrix element effects resulting from the symmetry
of Bloch states on either side of the interfaces, and from constructive and destruc-
tive interference resulting from conservation of transverse momentum. In real devices
it is extremely difficult to observe such coherent effects, especially in systems invol-
ving transition metal|semiconductor interfaces which are apparently quite disordered.
Even the best interfaces between two transition metals are considered to contain sub-
stantial amounts of disorder [55–58]. In this section, we will address the influence of
relatively weak disorder at the Fe|Cr interfaces on the energy and spin dependent
transmission. In the presence of disorder, the transmission can be expressed as the
sum of two contributions, (i) a ballistic part, where the transmission is between two
Bloch states with the same k‖, and (ii) a diffusive part, where the transmission is
between two Bloch states with different k‖. We want to investigate to what extent
the high asymmetry in the transmission observed in the case of specular interfaces
(Fig. 5.7) will survive interface disorder and how the magnetotransmission and trans-
fer factor will be affected. As in our previous work [34, 35, 59–61], and motivated by
experimental studies [55–58], disorder at the Fe|Cr interface will be modeled using
two monolayers of 50-50 alloy where the sites are randomly occupied by Fe or Cr
atoms.

In Fig. 5.10, the spin-dependent transmission through the SVT with disordered
Fe|Cr interfaces are shown as a function of the energy ∆E above SB for both P and
AP configurations. For the P magnetic configuration (Fig. 5.10a), the minority spin
transmission increases modestly while there is a huge increase in the majority spin
transmission, by as much as five orders of magnitude at low energies. This can be
simply understood in terms of the large disorder-induced increase of transmission
through an Fe|Cr (001) interface in the majority spin channel [34]. The effect is com-
pounded in the SVT by the restriction of the transverse momentum to a small area
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Figure 5.10: Renormalized transmissions of a) P and b) AP configuration in the
SVT as a function of the energy above EF + ΦS for majority (◦) and minority (H)
spins in case of disordered metallic Fe|Cr interfaces.

Energy (eV) α∗ MT (%) Pol (%)
0.703 0.20× 10−1 170 100
0.745 0.80× 10−1 180 30
0.790 1.35× 10−1 110 90
0.835 1.20× 10−1 60 75
0.880 1.20× 10−1 170 95
0.925 1.15× 10−1 370 85
0.970 1.45× 10−1 490 90
1.015 1.40× 10−1 70 70

Table 5.3: Energy dependence of the “transfer factor”, α∗(E) = T maj
P (E) +

T min
P (E) ≡ TP (E), the “magnetotransmission” MT(E) = TP (E)/TAP (E) − 1 and

the polarization (for the P configuration) in the energy range 0.745− 1.015 eV for
disordered Fe|Cr interfaces. The transfer factor is calculated as the sum of majority
and minority normalized transmissions in the P configuration.
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Figure 5.11: Transmission probabilities through the SVT as a function of k‖
for Ga-termination and disordered metallic Fe|Cr interfaces. The upper plot is for
majority (a,b) and the lower is for minority (c,d) spin channels. (b,d) are the top-
view figures of their 3D counterparts (a,c). These figures are plotted at an energy
of 0.790 eV above EF , corresponding to the second energy point in Fig. 5.10, and
only the central 12% of the 2DBZ area is shown here (the values on the horizontal
axes are given in the units of 2

√
2π/4aGaAs).

around Γ̄ when the electrons are emitted from GaAs with this (crystal) momentum.
It is graphically illustrated by comparing the transmission probabilities plotted in
Fig. 5.11 as a function of k‖ with the specular case at the same energy in Fig. 5.8.
The increase in the majority spin channel transmission is immediately apparent.

Compared to the specular case, the spin asymmetry is reversed. The polarization
is smaller in absolute size, but still sizeable; see Table 5.3. An obvious consequence
of the increased majority spin transmission is a very strong enhancement of the total
transmission in the P configuration and consequently of the transfer factor also given
in Table 5.3.

The spin asymmetry we found for the specular AP configuration is almost com-
pletely suppressed by disorder; Fig. 5.10(b). As in the specular case, the spin up and
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spin down transmissions are now intermediate between the majority and minority
spin cases for the P configuration for the same reason. In the absence of construc-
tive and destructive interference, we expect to be able to factorize the transmission
through an SVT such as this into terms describing the transmission through indivi-
dual interfaces. A consequence of this factorization is that the transmission in the
AP configuration (for one spin direction) is essentially the geometric mean of the ma-
jority and minority spin transmissions for the P configuration. The reduction of the
difference between majority and minority spin transmissions in the P configuration
then inevitably leads to a reduced magnetotransmission.

5.4 Discussion and Conclusion

SVTs are usually operated in a regime in which their behaviour is largely de-
termined by inelastic scattering in the base of the device formed by relatively thick
magnetic and non-magnetic metallic layers, a volume effect [12]. Ignoring inelas-
tic scattering completely, we have studied the transmission of electrons well above
the Fermi energy in a model GaAs|Fe|Cr|Fe|GaAs (001) SVT structure, taking into
account the full electronic band structure of both materials (metals and semiconduc-
tors). When the interfaces are specular, details of the electronic structure play a very
important role and lead to large spin-dependent transmissions and dependence on the
relative orientations of the magnetic layers, P or AP. These effects are so sensitive
to disorder, however, that it is doubtful if they can be observed experimentally. It
is much more interesting to be able to consider the more realistic case of disordered
interfaces where we find that disorder counterintuitively leads to large enhancement
of the transmission through a SVT in the P configuration. If we were to assume a
thermionic emission-type distribution of the current Iσ

e (E) injected from the emitter
[8]. and calculate the collector current as IP

c =
∑

σ

∫
Iσ
e (E)T σ

P (E)dE, this would give
rise to a large transfer ratio because TP (E) is large and does not have a strong energy
dependence when interface disorder is present. We could calculate the magnetocur-
rent in a very similar fashion and would find values of the order of 100% because the
magnetotransmission MT(E) also does not exhibit a very strong energy dependence;
see Table 5.3.

These findings suggest an interesting alternative scenario for SVT operation. Ins-
tead of using thick magnetic layers and making use of the volume inelastic scattering
effect, we propose using thin magnetic layers to reduce the inelastic scattering as
much as possible which will increase the transfer ratio, and to rely on the interface
scattering to provide the spin-dependence needed to make a magnetic sensor.

Since disorder at the Fe|Cr interfaces is so important, we should then ask what
will happen if disorder is included at the GaAs|Fe interface. The spin dependence
of the transmission through a clean GaAs|Fe interface is much larger than the spin
dependence of the transmission through a disordered Fe|Cr interface. For the same
disorder as used here, a transmission ratio of Tmin

P /Tmaj
P of about 3 is found in the

relevant energy region 0.7-1.0 eV above the Fermi energy for an Fe|Cr|Fe sandwich
[62]. We immediately note that this asymmetry is opposite to that found for the
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GaAs|Fe interface so that using clean GaAs|Fe and disordered Fe|Cr interfaces may
not be optimal. The magnetotransmission (P vs AP) for the Fe|Cr|Fe sandwich is
small. Nevertheless, the result of having a small spin dependent interface transmis-
sion embedded in a spin independent diffusive medium can still give rise to large net
spin dependent scattering [32, 34, 35] making a detailed study of this system neces-
sary. Unfortunately, while we have some indications of the roughness and disorder at
metallic interfaces, we have very little useful information about the nature of metal-
semiconductor interfaces especially when more than a single interface is prepared
which leads to substantially more disorder at one of the interfaces because of growth
mechanisms.
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Appendix A

Appendix to Chapter 2

A.1 Velocities

Let us start by deriving the expression for the group velocity of an eigenstate of a
general tight-binding Hamiltonian, which for a translationally invariant system can
be written in the Bloch representation as:

HRL,R′L′(k) =
∑
T

eik·THRL,(R′+T )L′ (A.1)

where RL (L = lm) labels the sites and orbitals within the unit cell and T runs over
lattice vectors. The energy eigenvalues εµ(k) are the expectation values

εµ(k) = a†µ(k)H(k)aµ(k) (A.2)

where the eigenvectors aµ(k) are indexed by RL and we assume the normalization
a†µ·aµ = 1. It is now straightforward to calculate the group velocity of the propagating
mode

υµ =
1
~
∂εµ(k)
∂k

=
i

~
∑
T

Teik·T×∑
RL,R′L′

a∗RLHRL,(R′+T )L′aR′L′

(A.3)

In the mixed representation
∣∣I,k‖〉 defined in section 2.2.2 (A.3) gives for the velocity

in the stacking direction

υµ =
id

~
[
a†µHI,I+1(k‖)λµaµ − h.c.

]
(A.4)

where d is the distance between equivalent monolayers in adjacent principal layers
(PL), the hopping is assumed (as in section 2.2.2) to extend only between neighbou-
ring PLs and λµ = exp(ik ·T0) with T0 connecting equivalent sites in the neighbou-
ring PLs.
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(A.3) and (A.4) are nothing other than the expectation values of a standard tight-
binding velocity operator [1, 2], which can be written in second quantization form
as:

υ̂ =
i

~
∑
T,T ′

(T′ −T)

×
∑

RL,R′L′

H(R+T )L,(R′+T ′)L′ ĉ†(R+T )Lĉ(R′+T ′)L′ (A.5)

The velocity defined in this way describes the motion of an electron between neigh-
bouring unit cells, i.e., the motion related to the overall current carried by the state.
Using the relation between the generalized Bloch matrices (2.24) and the surface
Green function one can, equivalently, express (A.3) using the latter quantities. More
details can be found in Ref. [3].

In the screened representation, the KKR tail-cancellation equation of Sec. 2.2 has
the algebraic structure of a tight binding Hamiltonian, but is nonlinear in energy. In
order to find equivalents of (A.3) and (A.4) for our MTO formalism, we must relate
it to the linearized MTO (LMTO) Hamiltonian. Introducing the Hermitian matrix
[4, 5]

hα(ε) = −[Ṗα(ε)]−1/2 (Pα(ε)− Sα) [Ṗα(ε)]−1/2

= −Pα(ε)[Ṗα(ε)]−1 + [Ṗα(ε)]−1/2Sα[Ṗα(ε)]−1/2, (A.6)

fixing the energy at ε = εF and defining the potential parameters [5, 6]
√
dα = [Ṗα(εF )]−1/2 (A.7a)

and
cα = −Pα(εF )/Ṗα(εF ) + εF , (A.7b)

we arrive at
hα ≡ hα(εF ) = cα +

√
dα Sα

√
dα − εF . (A.8)

Equation (A.8) has the form of a two-center tight binding Hamiltonian whose energy
is given relative to εF . It provides the lowest order approximation [4, 5] to the full
LMTO Hamiltonian and yields eigenvalues correct to first order in (ε− εF ). Conse-
quently the error introduced by using (A.8) in (A.3) is also of the first order and
vanishes for states at the Fermi energy. For such states the eigenvectors of (A.8) are
equal to those of (2.15) up to the (position and orbital dependent) scaling factor:

cµ(k) = (Ṗα(εF ))−1/2aµ(k) (A.9)

Using (A.6) and (A.9) in (A.4) we arrive at equation (2.38).

A.2 Symmetry relations

If we look closely at the transmission probabilities in Fig. 2.6, we see that the sheet
resolved transmissions exhibit the geometrical symmetry of the underlying lattice
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(i.e. the three-fold rotational axis). The total transmission probability on the other
hand possesses an extra inversion symmetry, T (k‖) = T (−k‖), which results in plots
with a six-fold rotational axis. This higher symmetry is the manifestation of the
fundamental time-reversal symmetry obeyed in the absence of spin-orbit coupling
and a magnetic field. In the case of the bulk system time-reversal symmetry grants
that for every eigenstate ψα(k) there exists the counterpart with the same energy and
opposite wave vector (i.e. εα(k) = εα(−k)) and the wave functions are related by the
complex conjugate. The situation is more complicated in the case of the scattering
state. Consider a state incoming from the left lead and scattered in the middle region.
The wave function consists then of the incoming and reflected states in the left lead

Ψr
L(k‖) = ψ+

µ (k‖) +
∑
µ′

rµ′µ(k‖)ψ−µ′(k‖) (A.10)

and of the transmitted states in the right lead

Ψr
R(k‖) =

∑
ν

tνµ(k‖)ψ+
ν (k‖). (A.11)

The time reversal operation transforms the above“retarded”state into the“advanced”
one in which a number of incoming states (from the left and the right) combine to
produce a single outgoing state on the left, i.e.

Ψa
L(−k‖) =

∑
µ′

r∗µ′µ(k‖)ψ+
µ′(−k‖) + ψ−µ (−k‖) (A.12)

and
Ψa
R(−k‖) =

∑
ν

t∗νµ(k‖)ψ−ν (−k‖). (A.13)

Equations (A.12) and (A.13) impose a set of conditions on the values of scattering
coefficients for the states with −k‖. Combined with the analogous conditions derived
for the states with the incoming state in the right lead, they are compactly expressed
as

I = S
(
−k‖

)
S∗

(
k‖

)
⇒ S

(
−k‖

)
= ST

(
k‖

)
. (A.14)

The scattering matrix S is defined as

S =
(
r t′

t r′

)
(A.15)

where r(′
) and t(′

) are matrices in the space of the lead modes and the primed
coefficients describe scattering of the states incoming from the right. More specifically
we have:

tνµ(−k‖) = t′µν(k‖) and rµ′µ(−k‖) = rµµ′(k‖) (A.16)

Equation (A.16) gives

TLR(−k‖) =
∑
νµ

|tνµ(−k‖)|2 =
∑
µν

|t′µν(k‖)|2 = TRL(k‖) (A.17)
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In addition, for any two-terminal device, the Hermiticity of the scattering matrix
guarantees that TRL(k‖) = TLR(k‖) (see Ref. [7]) which finally proves the in-plane
inversion symmetry mentioned at the beginning. The last step can not however be
taken for the partial (FS resolved) transmission probabilities. These quantities thus
possess only the geometrical symmetry of the system.
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Appendix B

Appendix to Chapter 5

B.1 GaAs bulk band structure

To better understand how the details of the calculation method and the various
approximations used can affect the numerical results, we evaluated the influence of
various parameters on the latter. We have looked at how does an spd versus spdf
localized basis sets and ASA versus so-called combined correction term (supposed to
be more accurate [1]) to the one-electron LMTO Hamiltonian and overlap matrices
affect the energy band gap (Eg) of GaAs as a function of the size of the Wigner Seitz
radii (WSR) of the atomic (Ga and As) and empty (E1 and E2) spheres. Fig. B.1
summarizes the results of our calculations. These results are obtained by using the
TB-LMTO method as implemented in the Stuttgart code (see Ref. [2–4]).

Shown in Fig. B.1(a) the band gap of GaAs when the ratio (rA/rB) of WSR of
the empty to the atomic spheres increases. We observe a proportionality between Eg

and the WSR of Ga and As atoms, when WSR (Ga, As) decreases Eg decreases as
well. There is a transition from an insulator to metallic behaviour. The Ga and As
atomic spheres are equal and vary from 3.000 to 2.110 a.u while the empty spheres,
also with equal sizes, vary from 2.110 to 3.000 a.u. [6]. If one includes the combined
correction term the band gap decreases substantially when the size of the atomic
spheres decreases (the region where the atomic spheres are larger than the empty
spheres, rA/rB < 1). In the limit where the kinetic energy of the electrons in the
interstitial region is neglected, the band gap of GaAs can reach values as high as 2.00
eV. Furthermore, including the f-electrons decreases even more Eg, but less as does
the combined correction term.

In Fig. B.1b the band gap of GaAs is calculated when the WSR of Ga and As are
equal to that of the surrounding empty spheres E2 and E1, respectively. Most of the
features observed in Fig. B.1a are retained in this case too. It shows mainly that Eg
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Figure B.1: Energy band gap, Eg, of zinc-blende GaAs as a function of the size
of WSR of the atomic (Ga and As) and empty (E1 and E2) spheres. Filled (empty)
triangles denote results with (without) combined correction term to the one-electron
LMTO Hamiltonian and overlap matrices. Triangles (squares) denote results where
the spd (spdf) localized basis set is used, f-electrons are downfolded [5]. (1) and (2)
configurations show the chemical surrounding of the atomic species Ga and As. The
last line gives the positions of the atomic and empty spheres in a zinc-blende unit
cell.

decreases rapidly when the ratio r(A=Ga,E2)/r(B=As,E1) decreases, so does also the
effect of including f-electrons (downfolded) and the combined correction term.

In the limits when WSR(Ga,E2) equals 2.110 a.u. and WSR(As,E1) equals 3.000
a.u. the total valence charge is 1.354, 0.252, 4.935 and 1.458 electrons, respectively for
Ga, E2, As and E1. We observe a large charge transfer (3.000-1.354 = 1.646 electrons)
from Ga into the interstitial empty spheres due to the shrink in in the size of the Ga
atomic sphere whereas most of that of As atomic sphere is retained, only a fraction
of a hundred is lost. There is a large (30%) overlapping between As and E1 spheres
and a small one between the rest of the spheres. When one increases the volume of
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the Ga atomic sphere (that of As decreased), the valence charge on Ga increases up
to 2.378 electrons for a WSR of 2.6304 a.u (4.248 electrons in As with the same size
of the atomic sphere) and Eg decreases. If one includes the combined correction term
to the Hamiltonian and overlap matrices, GaAs remains as a semiconductor in only
a small interval (rA/rB ∈ [0.90, 1.42]) of WSR, [2.490,3.000] a.u. for Ga and [2.757,
2.110] a.u. for As.

Fig. B.1c illustrates the case when the WSR of two spheres, sitting on two sites
symmetrically equivalent, are taken equal, that is rGa = rE1 and rAs = rE2 . Compa-
red to Figs. B.1a,b, Eg is very little sensible to the variation of the atomic and empty
spheres WSR sizes, we observe a “plateau” in the band gap curve on a wide range
of WSR centered around the value rA/rB = 1, equivalent to all equal spheres with
a WSR of 2.6304 a.u. The valence charge is 2.378, 4.248, 0.754 and 0.620 electrons,
respectively for Ga, E1, As and E2. The atomic overlapping between the spheres is
everywhere 14%. The energy band gap of 0.74 eV is reduced to 0.36 eV when one
includes the combined correction term. Furthermore, these two values are even more
reduced to 0.24 and 0.16 eV, respectively, if one uses an spdf basis set.
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Summary

Magnetoelectronics is a rapidly growing field where basic research is moving very
fast towards smaller structures of nanoscale dimensions and novel materials. Much of
the interest in magnetoelectronics is motivated by its potential applications in science
and technology. The developments in this field of research are mostly connected to
the giant magnetoresistance (GMR) and tunnel magnetoresistance (TMR) pheno-
mena. These transport phenomena are based on the up and down spin of electrons,
therefore the electronic transport is spin-dependent. Spin-dependent transport will
occur naturally in any material for which there is an imbalance in the spin popula-
tions at the Fermi energy. Spintronics, or spin electronics, is another fast emerging
field. It relies on the active control and manipulation of the spin degree of free-
dom of electrons, as well as their electrical charge, in semiconductor based devices.
By incorporating spin-dependent properties and magnetism in semiconductor based
structures, new applications can be achieved which can go beyond magnetoresistive
effects in metallic systems.

The aim of the present thesis is to study theoretically the spin-dependent trans-
port properties in nanoscale hybrid and inhomogeneous structures. Typical structures
contain one or several interfaces formed by magnetic, nonmagnetic and/or semicon-
ductor materials. Since, at the atomic scale, there are discontinuities in the electronic
structure at the interfaces therefore a quantum mechanical treatment is the most
appropriate framework for a rigorous description of electronic transport. The electro-
nic structure and magnetic properties have been obtained using the surface Green’s
function technique (SGF) implemented within the framework of tight-binding linear
muffin-tin orbital (TB–LMTO) method in the atomic sphere approximation (ASA).
The coherent potential approximation (CPA) method has been employed to model
substitutional disorder at the interfaces. This first-principles approach allows us to
take into account the complex nature of the transition metal electronic structures
and to be able to describe interfaces realistically. To study coherent electronic spin
transport in mesoscopic systems, we have developed a general, efficient and flexible
method, suitable for Hamiltonians that can be represented in a tight-binding form
and based on direct matching of the scattering region wave function to Bloch modes
of the leads. This method is based on the Landauer–Büttiker formulation of trans-
port theory using a first-principles TB–MTO implementation. Combined with the
local spin density approximation (LSDA) of the density functional theory (DFT)
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and supercell technique, our approach has been applied to calculate the scattering
matrices, entering the conductance and/or resistance calculations, for a variety of
hybrid systems of current interest.

In Chapter 1 we give a general introduction to the fields of magnetoelectronics and
spintronics. Some background of the calculation details, namely the density functional
theory and the conductance calculation within the Landauer–Büttiker approach, is
briefly presented. A short description of the spin-valve transistor is provided.

In Chapter 2 we present the details of an efficient wave-function matching for-
malism suitable for the calculation of the transmission and reflection matrices from
first principles in layered materials. Within the framework of spin density functional
theory and using TB–MTO representation, scattering matrices are determined by
matching the wave-functions at the boundaries between leads which support well-
defined scattering states and the scattering region. The calculation scales linearly
with the number of principal layers N in the scattering region and as the cube of
the number of atoms H in the lateral supercell. For metallic systems for which the
required Brillouin zone sampling decreases as H increases, the final scaling goes as
H2N . Because a minimal basis-set of localized orbitals is used, namely spd(f), we
are able to treat large lateral supercells. In practice, the efficiency of the basis set
allows scattering regions for which H2N ∼ 106 to be handled. This allows us to study
transport properties in the diffusive regime and modeling materials with large lattice
mismatch. The method is illustrated for Cu|Co multilayers and single interfaces using
large lateral supercells (up to 20× 20) to model interface disorder. Because the scat-
tering states are explicitly found, “channel decomposition” of the interface scattering
for clean and disordered interfaces can be performed.

In Chapter 3 we carry out a systematic material-specific study of the electro-
nic and the spin-dependent transport properties in nearly lattice matched materials,
namely Cr|Fe, Cu|Co, Cu|Ni and Co|Ni along [001], [011] and [111] directions. The
calculated 3d transition metals band structures and their Fermi surfaces have been
used for the interpretation of the results of the transport calculations, e.g. to explain
the anisotropy in transport properties for specular interfaces observed in the Cr|Fe
system. The effect of defect scattering has been considered too. It reduces the trans-
mission probability and thus increases the interface resistance for some systems (like
in Cu|Co, Cu|Ni and Co|Ni systems). On the other hand the opposite happens for
Cr|Fe system, that is, defect scattering enhances substantially the interface trans-
mission. For the Cr|Fe (001) interface, with higher spin asymmetry, the interface
resistance for the majority spin-channel decreases by a factor 3. This surprising large
effect of defect scattering on this particular orientation of Cr|Fe system will be consi-
dered in more details by separating the ballistic versus the diffusive components of
the interface transmission.

Chapter 4 is devoted to studying the orientation-dependent transparency of me-
tallic interfaces. As devices are reduced in size, interfaces start to dominate electrical
transport making it essential to be able to describe reliably how they transmit and
reflect electrons. In this chapter, for a number of nearly perfectly lattice-matched
materials, we calculate the dependence of the interface transparency on the crystal
orientation. Quite remarkably, a large anisotropy is predicted for interfaces between
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the prototype free-electron materials Ag and Al, a factor of 2 difference between the
(111) and (001) orientations has been found. To interpret this behavior use is made of
the calculated Fermi surfaces and their projections along these two directions. Similar
results for Al|Au interfaces have been obtained.

Motivated by the transport measurements (electrical and magnetic response) in
the spin-valve transistor we have decided to carry out a study of a model structure to
understand the spin-dependent transport properties in this device (Chapter 5). In the
operation of spin-valve transistors (SVT), use is made of the spin-dependent attenua-
tion of hot electrons in a magnetic material - a volume effect. The downside of this
attenuation is an unacceptably small collector current. Little attention has been paid
in this context to spin-dependent interface scattering which, in the linear response
regime, is the origin of the GMR effect. To gain some insight into the importance of
this interface term, we have studied the spin-dependent transmission through a mo-
del GaAs|Fe|Cr|Fe|GaAs (001) SVT structure as a function of energy for clean and
disordered metallic interfaces using the transport method developed in Chapter 2.
In the absence of disorder and inelastic scattering, we find large magnetocurrents
arising from materials-related symmetry incompatibilities when the transverse mo-
mentum is small as it is in GaAs, but small transfer ratios. Interface disorder at the
metallic interfaces is found to reduce the magnetocurrent but increases the transfer
ratio considerably.





Résumé

La magnétoélectronique est un sujet qui jouit d’une croissance rapide ou la re-
cherche fondamentale avance à grands pas vers des structures de plus en plus petites,
de dimensions de l’ordre du nanomètre et vers des matériaux nouveaux. L’interêt
porté à la magnétoélectronique provient de la curiosité scientifique qu’elle suscite
aussi bien de ses applications technologiques potentielles. Les dévelopements dans
ce domaine concernent, notamment, les phénomènes de la magnétorésistance géante
(GMR) ainsi que de la magnétorésistance tunnel (TMR). Pour ces phénomènes le
transport dépend de la polarisation en spin des électrons. Le transport dépendant
en spin a lieu naturellement dans tout système qui présente une différence de po-
pulation des deux orientations de spin au niveau de Fermi. La “spintronique”, ou
“électronique de spin”, est un autre domaine émergent. Elle concerne la manipulation
du spin des électrons (ou trous) qui servent de“porteurs”d’information à côté de leurs
charges électriques, dans des composants à base de semi-conducteurs. En incluant le
transport dépendant du spin et le magnétisme dans les composants à base de semi-
conducteurs, de nouvelles applications, qui vont au-delà des effets magnétorésistifs
dans les systèmes métalliques, peuvent être realisées.

Le but de cette thèse est l’étude théorique du transport dépendant de spin dans des
structures hybrides. Ces structures contiennent une ou plusieures interfaces formées
en juxtaposant des matériaux magnétiques, non-magnétiques et/ou semi-conducteurs.
La description quantique est nécessaire du fait de la discontinuité de la structure élec-
tronique à l’échelle atomique au niveau de ces interfaces. La structure électronique
et les propriétés magnétiques des interfaces sont obtenues à l’aide de la méthode des
fonctions de Green de surface (SGF) implementées dans le cadre de la méthode linéa-
risée des orbitals muffin-tins en liaisons fortes (TB–LMTO) et dans l’approximation
des sphères atomiques (ASA). L’approximation du potentiel cohérent (CPA) est uti-
lisée pour tenir compte du désordre substitutionnel aux interfaces. Cette méthode,
dite de premiers principes ou ab initio, nous permet de tenir compte de la nature com-
plexe de la structure électronique des métaux de transition et des semi-conducteurs
ainsi que de décrire les interfaces d’une manière réaliste. Pour étudier le transport
électronique cohérent de spin dans les systèmes mesoscopique nous avons développé
une méthode générale, efficace et flexible, appropriée aux Hamiltoniens qui peuvent
être écrits sous forme liaisons-fortes. Elle est basée sur le raccordement de la fonction
d’onde de la région où la diffusion a lieu aux modes de Bloch des électrodes. Cette
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méthode est basée sur la formulation de Landauer–Büttiker de la théorie du trans-
port formulée dans le cadre de la méthode TB–MTO. Combinée avec l’approximation
de densité locale (LDA) de la théorie de la fonctionnelle de densité (DFT) et de la
technique de la supercellule, notre méthode est appliquée aux calculs des matrices
de diffusion qui entrent dans le calcul des conductances et/ou résistances pour divers
systèmes hybrides qui présentent un intérêt d’actualité.

Dans le chapitre 1 nous présentons une introduction générale relative à la magné-
toélectronique et à la spintronique. Un bref aperçu des détails concernant la théorie de
la fonctionnelle de densité et le calcul des conductances par l’approche de Landauer–
Büttiker, est aussi donné. Une brève description du transistor à base de “valve de
spin” est fournie.

Dans le chapitre 2 nous présentons les détails d’un formalisme pertinent, basé sur
le raccordement des fonctions d’onde, approporié au calcul des matrices de trans-
mission et de réflection à partir des méthodes de premiers principes appliquées aux
systèmes en (multi)couches. En utilisant la méthode TB–MTO, dans le cadre de la
DFT, les matrices de diffusion sont déterminées en raccordant les fonctions d’ondes
aux frontières des électrodes, qui ont des états de diffusion bien définis, avec la ré-
gion active de diffusion. Les calculs sont linèairement proportionnels au nombre de
“couches principales”N dans la région active de diffusion et d’une manière cubique
par rapport au nombre d’atomes H dans la supercellule latérale. Pour les systèmes
métalliques dont la zone de Brillouin échantillonnée diminue en augmentant H, les
calculs augmentent finalement avec H2N . Nous pouvons traiter des supercellule de
grandes dimensions latérales car nous utilisons une base minimale de fonctions d’onde,
à savoir spd(f). En pratique, cette base nous permet de traiter des régions active
de diffusion pour lesquelles H2N ∼ 106. Cela nous permet d’étudier les properié-
tés de transport dans le regime diffusif ainsi que modeler les matériaux présentant
une différence conséquente entre leurs paramètres de réseaux respectifs. La méthode
est appliquée à des multicouches de Cu|Co ainsi qu’à des interfaces, en utilisant de
grandes supercellules latérales (de taille jusqu’à 20 × 20) pour modeler le désordre
aux interfaces. Dans la mesure où les états de diffusion sont obtenus explicitement, la
“décomposition en états” (channel decomposition) de diffusion aux interfaces pures
ainsi que désordonnées peut être faite.

Dans le chapitre 3 nous présentons une étude systématique du transport élec-
tronique dépendant de spin dans des matériaux dont les paramètre de maille sont
très proches, à savoir Cr|Fe, Cu|Co, Cu|Ni et Co|Ni suivant les directions [001], [011]
ainsi que [111]. La structure de bandes des métaux de transions 3d et leurs surfaces
de Fermi sont utilisées pour expliquer les résultats des calculs de transport, et en par-
ticulier, l’anisotropie des properiétés de transport observée aux interfaces pures du
système Cr|Fe. Les effets de la diffusion due aux défauts sont aussi étudiés. Ceux-ci
réduisent la probabilité de transmission et donc augmente la résistance de quelques
uns de ces systèmes (comme Cu|Co, Cu|Ni et Co|Ni). En revanche, c’est le contraire
qui se produit dans le cas du système Cr|Fe où la diffusion par les défauts augmente
d’une manière considérable la transmission à travers l’interface. Dans le cas de l’in-
terface Cr|Fe (001), qui présente une plus haute asymétrie en spin, la résistance à
l’interface, pour les spins majoritaires, diminue d’un facteur de 3. Cet effet, grand et



149

surprenant, de la diffusion par des défauts est étudié avec plus de détails en séparant
les composantes balistiques et “diffusantes” de la transmission à l’interface.

La transparence, des interfaces métalliques, dépendante de l’orientation cristalline
est présentée dans le chapitre 4. La réduction de la taille des composants électroniques
fait que les interfaces dominent le transport et cela demande une description fiable de
la manière avec laquelle ces interfaces transmettent ou réfléchissent les électrons. Dans
ce chapitre, nous calculons la dépendance de la transparence de l’interface en fonction
de l’orientation cristalline d’un nombre de matériaux ayant des mailles proches (ou
égales). Une grande anisotropie est trouvée aux interfaces des deux matériaux Ag et
Al, prototypes de systèmes à électrons libres: une différence d’un facteur de 2 entre les
orientations (111) et (001) est un fait exceptionnel. Nous avons interprété ce résultat
à partir des surfaces de Fermi calculées pour les deux matériaux ainsi que de leurs
projections sur ces deux directions. Des résultats similaire sont aussi trouvés pour les
interfaces Al|Au.

Motivés par des mesures de transport (mesure de réponses électrique et magné-
tique) dans les transistors à “valve de spin”, nous avons mené une étude sur une
structure modèle pour comprendre les properiétés de transport dépendant du spin de
ce composant électronique (Chapter 5). Dans les“valve de spin”on exploite l’atténua-
tion dépendante du spin des électrons “chauds” dans le matériau magnétique. Ceci
est un effet de volume. L’inconvénient de cette atténuation est qu’elle a pour consé-
quence un courant collecteur très faible. Dans ce contexte, peu d’intérêt a été porté
à la diffusion dépendante en spin qui, en régime de réponse linèaire, est à l’origine de
l’effet GMR. Pour comprendre le rôle de l’interface, nous avons étudié la transmission
dépendante en spin d’un système modèle, GaAs|Fe|Cr|Fe|GaAs (001), en fonction de
l’énergie pour des interfaces pures et désordonnées à l’aide de la méthode développée
dans le chapitre 2. En l’absence de désordre ainsi que de diffusion inélastique, nous
trouvons de grands “magnétocourants” dus aux incompatibilités entre les symétries
des matériaux quand “l’impulsion” transversale est “petite” comme dans le cas de
GaAs, mais avec des taux de transfert faibles. Nous avons trouvé que le désordre
aux interfaces réduit le “magnétocourant” mais augmente le taux de transfert d’une
manière considŕable.





Samenvatting

Magnetoelektronica is een snelgroeiend vakgebied waar basisonderzoek zich richt
op nieuwe materialen en steeds kleiner wordende structuren met een nanoschaal af-
metingen. Een groot deel van de interesse in magnetoelektronica wordt gestimuleerd
door de potentiële toepassingsmogelijkheden in zowel wetenschap als technologie. De
ontwikkelingen in dit onderzoeksgebied zijn hoofdzakelijk verbonden met de fenome-
nen van giant magnetoresistance (GMR) en tunnel magnetoresistance (TMR). Deze
transport aanpak is gebaseerd op het feit dat elektronen ofwel een up ofwel een down
spin hebben, zodat het transport spinafhankelijk is. Spinafhankelijk transport ge-
beurt spontaan in elk materiaal waar de twee spinpopulaties niet in evenwicht zijn
rond de Fermi-energie. Spintronica, of spinelektronica, is een ander snel opkomend
gebied dat steunt op de actieve controle en manipulatie van de spinvrijheidsgraden in
plaats van de elektrische lading van elektronen in halfgeleidertoepassingen. Door het
invoeren van magnetisme en spinafhankelijke eigenschappen in halfgeleidertoepassin-
gen kunnen nieuwe toepassingen worden ontwikkeld die de magnetoresistive effecten
van metallische systemen te boven gaan.

Het doel van deze thesis is de theoretische studie van spinafhankelijke trans-
porteigenschappen in hybride en inhomogene structuren met nanometer afmetingen.
Dergelijke structuren bevatten één of meerdere interfaces tussen magnetische, niet-
magnetische en/of halfgeleider materialen. Gezien er, op atomaire schaal, disconti-
nüıteiten in de ladingsstructuur optreden aan deze interfaces is een kwantummecha-
nische aanpak nodig om een rigoureuze beschrijving van het elektronisch transport te
kunnen geven. De elektronische structuur en de magnetische eigenschappen werden
verkregen door gebruik te maken van de oppervlakte Greense functie techniek (SGF)
gëımplementeerd binnen het raamwerk van de tight-binding linear muffin-tin orbital
(TB–LMTO) methode in de atomaire sfeer benadering (ASA). De coherente poten-
tiaal benaderingsmethode (CPA) werd gebruikt om substitutionele wanorde aan de
interfaces te modelleren. Deze first-principles aanpak staat ons toe de complexe na-
tuur van de elektronische structuur van transitiemetalen in acht te nemen en zo de
interfaces realistisch te beschrijven. Om coherente elektronische spintransport in me-
soscopische systemen te bestuderen hebben we een algemene, efficiënte en flexibele
methode ontwikkeld, aangewezen voor Hamiltonianen die in een tight-binding vorm
kunnen gerepresenteerd worden en gebaseerd op het rechtstreeks afstemmen van de
golffunctie in het verstrooïıngsgebied op de Blochmodes van de leads. Deze methode
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is gebaseerd op de Landauer–Büttiker formulering van transporttheorie gebruik ma-
kende van een first-principles TB–MTO implementatie. Onze aanpak, in combinatie
met de lokale spin dichtheidsbenadering (LSDA) van de dichtheidsfunctionaaltheo-
rie (DFT) en de supercel techniek, is gebruikt geweest om de verstrooïıngsmatrices,
welke in de geleidings- en/of weerstandsberekeningen te voorschijn komen, van een
set verschillende types hybride systemen te berekenen.

In hoofdstuk 1 geven we een algemene inleiding tot magnetoelektronica en spin-
tronica. We geven een korte bespreking van enkele achterliggende methoden van de
berekeningen, meer bepaald dichtheidsfunctionaaltheorie en de berekening van gelei-
ding in het Landauer–Büttiker formalisme. We eindigen met een korte beschrijving
van de spin-valve transistor.

In hoofdstuk 2 geven we de bijzonderheden van een efficiënt formalisme voor het
afstemmen van de golffuncties, ideaal voor het berekenen van transmissie- en reflectie-
matrices, vanuit first-principles, van gelaagde materialen. Binnen het raamwerk van
spindichtheidsfunctionaaltheorie en gebruik makende van de TB–MTO voorstelling
worden de verstrooïıngsmatrices vastgelegd door het verbinden van de golffuncties op
de grenzen tussen de leads, welke goed gedefinieerde verstrooïıngstoestanden bevat-
ten, en het vertrooïıngsgebied. De berekening schaalt lineair met het aantal principale
lagen N in het verstrooïıngsgebied en als een derde macht met het aantal atomen H
per zijdelingse supercel. Voor metallische systemen, waarvoor het benodigde sample
van de Brillouinzone verkleint als H vergroot, is de uiteindelijke schaling evenredig
met H2N . Omdat er wordt gebruik gemaakt van een minimale basisset van gelo-
kaliseerde orbitalen, namelijk spd (f ), is het mogelijk grote laterale supercellen te
behandelen. De efficiëntie van de basisset staat ons toe in praktijk verstrooïıngs-
gebieden te behandelen waarvoor H2N ∼ 106. Dit geeft ons de mogelijkheid om
transporteigenschappen in het diffuse regime te bestuderen en het modelleren van
gelaagde materialen met sterk verschillende roosterconstantes. De methode is toe-
gelicht, voor zowel gelaagde Cu|Co systemen als een enkelvoudige interface, gebruik
makende van grote laterale supercellen (tot 20 × 20 ), om wanorde in de interface
te modelleren. Omdat de verstrooïıngstoestanden expliciet gevonden worden is het
mogelijk een “channel decompositie ” van de interface verstrooïıngstoestanden voor
zowel zuivere als wanordelijke interfaces uit te voeren.

In hoofdstuk 3 voeren we een systematische materiaalspecifieke studie uit van de
elektronische en spinafhankelijke transporteigenschappen voor gelaagde materialen
waarvan de roosterconstanten van de componenten bijna hetzelfde zijn, meer bepaald
Cr|Fe, Cu|Co, Cu|Ni en Co|Ni langs de [001], [011] en [111] richtingen. De berekende
bandstructuren en hun Fermi-oppervlakken voor deze 3d transitiemetalen zijn dan ge-
bruikt bij het interpreteren van de resultaten van de transportberekeningen. Bvb. bij
het verklaren van de anisotropie in de transporteigenschappen van scherpe interfaces
zoals geobserveerd in het Cr|Fe systeem. Het effect van verstrooïıng aan defecten werd
ook in beschouwing genomen. Enerzijds verkleint het de transmissiewaarschijnlijkheid
en zodoende vergroot het de interfaceweerstand voor bepaalde systemen (bvb. Cu|Co,
Cu|Ni en Co|Ni). Anderzijds gebeurt net het tegengestelde voor het Cr|Fe systeem,
waar verstrooïıng aan defecten de interfacetransmissie fors versterkt. In het geval van
de Cr|Fe (001) interface, met zijn hogere spinasymmetrie, verkleint de interfaceweers-
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tand voor het spinmajoriteitskanaal met een factor drie. Dit verrassend groot effect
van de verstrooïıng aan defecten in deze specifieke richting van het Cr|Fe systeem
zullen we in meer detail beschouwen door de interfacetransmissie op te splitsen in
een ballistische en een diffuse component.

Hoofdstuk 4 is gewijd aan de studie van oriëntatieafhankelijke transparantie van
metallische interfaces. Bij steeds kleiner wordende systemen zijn het de interfaces die
het transport beginnen domineren zodat het betrouwbaar kunnen beschrijven van
hoe ze elektronen reflecteren en doorlaten essentieel wordt. Voor een aantal systemen
waarbij de roosterconstanten van de samenstellende componenten quasi identiek zijn
hebben we de afhankelijkheid van de interfacetransparantie ten aanzien van de kristal-
oriëntatie berekend. Tamelijk opvallend is dat een grote anisotropie wordt voorspeld
voor interfaces tussen de prototype vrije elektron materialen Ag en Al. In deze geval-
len vinden we een factor twee verschil tussen de (111) en de (001) richting. Om dit
gedrag te verklaren werd gebruik gemaakt van de berekende Fermi-oppervlakken en
hun projecties langs de deze twee richtingen. Soortgelijke resultaten werden bekomen
voor de Al|Au interfaces.

Op basis van de transportmetingen (elektrische en magnetische respons) op de
spin-valve transistor hebben we besloten een studie te doen van een modelstruc-
tuur om zo de spinafhankelijke transporteigenschappen van dit systeem te begrijpen
(Hoofdstuk 5). De werking van de spin-valve transistor (SVT) maakt gebruik van
spinafhankelijke attenuatie van hete elektronen in een magnetisch materiaal - een
volume effect. Het nadeel van deze attenuatie is een onaanvaardbaar kleine collec-
torstroom. In deze context is nog maar weinig aandacht besteed aan spinafhankelijke
interfaceverstrooïıng welke, in het lineaire respons regime, de oorzaak is van het
GMR effect. Om inzicht in het belang van deze interfaceterm te verwerven hebben
we de spinafhankelijke transmissie, door een GaAs|Fe|Cr|Fe|GaAs (001) model-SVT
structuur, als functie van de energie, voor zowel scherpe als wanordelijke metallische
interfaces, bestudeerd, gebruik makende van de in hoofdstuk 2 ontwikkelde transport-
methode. Bij het ontbreken van wanorde en inelastische verstrooïıng vinden we dat
er grote magnetische stromen ontstaan, ten gevolge van materiaal eigen symmetrie-
incompatibiliteiten wanneer de transversale impuls klein is, zoals in GaAs, terwijl de
transferratio klein is. Wanorde aan de metallische interfaces blijkt de magnetische
stroom te verkleinen terwijl het de transferratio fors vergroot.
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PROPOSITIONS

belonging to the PhD thesis

“Spin transport from first-principles:
metallic multilayers and a model

spin-valve transistor”

by

Mohand Talanana

1. Electrons have spin as well as charge, and this may make all the difference in
future electronics. (G. A. Prinz; Physics Today 48, 58(1995))

2. Spin, the “internal degree of freedom” of the electron, was suggested theoreti-
cally in early 1925 by Ralph Kronig. When Wolfgang Pauli heard about the
idea, he criticized it severely. Largely due to Pauli’s criticism, Kronig decided
not to publish his idea.

3. The complexity of the transition metals (3d, 4d, . . . ) band structure requires a
first-principles approach using density functional theory (DFT).

4. The ab initio TB–MTO wave-function matching scheme is a very efficient,
flexible and physically transparent implementation of the Landauer–Büttiker
formalism suitable for studying mesoscopic transport in inhomogeneous layered
transition metal magnetic materials within DFT-LSDA.

5. The transmission probability through specular interfaces depends on the num-
ber of propagating states with positive group velocity, the mismatch of the
group velocities (complex band structures) of the states on either side of the
interface and matrix elements effects resulting from the symmetry of Bloch
states.

6. A large orientation dependence of the interface transmission is predicted for
Al|Ag, Al|Au and Fe|Cr majority spin channel. For the latter system, this ani-
sotropy is very sensitive to interface disorder.

7. The orientation dependence of the interface transmission in Al|Ag can be ex-
plained within the limit of free electron model.

8. Unfortunately, there is a very limited amount of information about the de-
tailed structure and nature of imperfections at metal–metal and/or metal–
semiconductor interfaces available from experiment to guide theorists.

9. Disorder, counterintuitively, enhances substantially the transmission through
the model GaAs|Fe|Cr|Fe|GaAs (001) spin-valve transistor structure.

10. Spintronics and magnetoelectronics, exciting and fascinating new nanoelectro-
nics adventures.

Enschede, June 2006





Summary

The aim of this thesis, “Spin transport from first-principles: metallic multilayers
and a model spin-valve transistor”, is to study theoretically the spin-dependent trans-
port properties in nanoscale hybrid and inhomogeneous structures. Typical structures
contain one or several interfaces formed by magnetic, nonmagnetic and/or semicon-
ductor materials. Since, at the atomic scale, there are discontinuities in the electronic
structure at the interfaces therefore a quantum mechanical treatment is the most
appropriate framework for a rigorous description of electronic transport. The electro-
nic structure and magnetic properties have been obtained using the surface Green’s
function technique (SGF) implemented within the framework of tight-binding linear
muffin-tin orbital (TB–LMTO) method in the atomic sphere approximation (ASA).
The coherent potential approximation (CPA) method has been employed to model
substitutional disorder at the interfaces. This first-principles approach allows us to
take into account the complex nature of the transition metal electronic structures
and to be able to describe interfaces realistically. To study coherent electronic spin
transport in mesoscopic systems, we have developed a general, efficient and flexible
method, suitable for Hamiltonians that can be represented in a tight-binding form
and based on direct matching of the scattering region wave function to Bloch modes
of the leads. This method is based on the Landauer–Büttiker formulation of trans-
port theory using a first-principles TB–MTO implementation. Combined with the
local spin density approximation (LSDA) of the density functional theory (DFT) and
supercell technique, our approach has been applied to calculate the scattering ma-
trices, entering the conductance and/or resistance calculations, for a variety of hybrid
systems (ferromagnetic, nonmagnetic and/or semiconductor materials) of current in-
terest.

Enschede, June 2006
Mohand Talanana; TNW – CMS
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